Skip to main content
Log in

Artificial floating islands: a promising tool to support juvenile fish in lacustrine systems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat complexity of freshwater ecosystems has been decreasing due to human impacts. Therefore, conservation and environmental management actions have intensified in the recent years. Artificial floating islands (AFIs) are one environmental management action intended to promote the populations of aquatic organisms. In this study, we installed eight AFIs in the littoral area of Lipno Reservoir, Czech Republic and covered them with local wetland vegetation to study the impact of this mitigation action on the fish community. The AFIs were sampled by Point Abundance Sampling Electrofishing (PASE). The AFIs were mainly inhabited by juvenile roach (Rutilus rutilus) and perch (Perca fluviatilis), with densities one to two orders of magnitude higher than in the surrounding control sites. Juvenile catfish (Silurus glanis) and adult northern pike (Esox lucius) were apex predators that were recorded exclusively at AFIs. More fish were captured in AFIs than in control areas (up to 29.2 times more). Even AFIs of simple construction harboured significantly more age 0 + and juvenile fish than control areas, confirming their potential to serve as nursery ground for age 0 + fish in lentic systems. Artificial floating islands can be used to support juvenile fish in the conditions of impoverished littoral structured habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bergström, L., F. Sundqvist & U. Bergström, 2013. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecology Progress Series 485: 199–210.

    Article  Google Scholar 

  • Byeon, H.-K., 2014. Fish and efficiency on attached fish eggs of artificial floating island in Lake Soyang, Korea. Korean Journal of Environment and Ecology 28: 559–565.

    Article  Google Scholar 

  • Campbell, B., Q. Hanich & A. Delisle, 2016. Not just a passing FAD: Insights from the use of artisanal fish aggregating devices for food security in Kiribati. Ocean & Coastal Management 119: 38–44.

    Article  Google Scholar 

  • Cantonati, M., S. Poikane, C. M. Pringle, L. E. Stevens, E. Turak, J. Heino, J. S. Richardson, R. Bolpagni, A. Borrini, N. Cid, M. Čtvrtlíková, D. M. P. Galassi, M. Hájek, I. Hawes, Z. Levkov, L. Naselli-Flores, A. A. Saber, M. Di Cicco, B. Fiasca, P. B. Hamilton, J. Kubečka, S. Segadelli & P. Znachor, 2020. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12: 260.

    Article  Google Scholar 

  • Casselman, J. M. & C. A. Lewis, 1996. Habitat requirements of northern pike ( Essox lucius ). Canadian Journal of Fisheries and Aquatic Sciences NRC Research Press Ottawa, Canada 53: 161–174.

    Article  Google Scholar 

  • Čech, M., J. Peterka, M. Říha, T. Jůza & J. Kubečka, 2009. Distribution of egg strands of perch (Perca fluviatilis L.) with respect to depth and spawning substrate. Hydrobiologia 630: 105–114.

    Article  Google Scholar 

  • CEN, 2015. Water quality - Sampling of fish with multi-mesh gillnets(EN 14757). , https://standards.globalspec.com/std/9929986/EN 14757.

  • Consoli, P., A. Martino, T. Romeo, M. Sinopoli, P. Perzia, S. Canese, P. Vivona, & F. Andaloro, 2015. The effect of shipwrecks on associated fish assemblages in the central Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom Cambridge University Press 95: 17–24, https://www.cambridge.org/core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom/article/abs/effect-of-shipwrecks-on-associated-fish-assemblages-in-the-central-mediterranean-sea/D29F56EFA9A8BA8A770C61C97A401070.

  • Copp, G. H., 2010. Patterns of diel activity and species richness in young and small fishes of European streams: a review of 20 years of point abundance sampling by electrofishing. Fish and Fisheries 10.1111(11): 439–460. https://doi.org/10.1111/j.1467-2979.2010.00370.x.

    Article  Google Scholar 

  • de Freitas, C. T., G. H. Shepard & M. T. F. Piedade, 2015. The Floating Forest: Traditional Knowledge and Use of Matupá Vegetation Islands by Riverine Peoples of the Central Amazon. PLOS ONE 10: e0122542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempster, T. & M. Taquet, 2004. Fish aggregation device (FAD) research: gaps in current knowledge and future directions for ecological studies. Reviews in Fish Biology and Fisheries 14: 21–42.

    Article  Google Scholar 

  • Dibble, E. D. & F. M. Pelicice, 2010. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of Freshwater Fish 19: 381–389.

    Article  Google Scholar 

  • Duncan, A. & J. Kubečka, 1995. Land/water ecotone effects in reservoirs on the fish fauna. Hydrobiologia 303: 11–30.

    Article  Google Scholar 

  • Eighani, M., S. Y. Paighambari, M. Taquet & J.-C. Gaertner, 2019. Introducing nearshore fish aggregation devices (FAD) to artisanal Persian Gulf fisheries: a preliminary study. Fisheries Research 212: 35–39.

    Article  Google Scholar 

  • Feger, B. T., & T. W. Spier, 2010. Evaluation of artificial PVC pipe structures as fish habitat in Spring Lake, Western Illinois, USA. Lakes & Reservoirs: Research & Management (10.1111) 15: 335–340. https://doi.org/10.1111/j.1440-1770.2010.00445.x.

  • Gatz, A. J., 2008. The use of floating overhead cover by warmwater stream fishes. Hydrobiologia 600: 307–310. https://doi.org/10.1007/s10750-007-9252-5.

    Article  Google Scholar 

  • Gownaris, N. J., K. J. Rountos, L. Kaufman, J. Kolding, K. M. M. Lwiza & E. K. Pikitch, 2018. Water level fluctuations and the ecosystem functioning of lakes. Journal of Great Lakes Research International Association of Great Lakes Research 44: 1154–1163. https://doi.org/10.1016/j.jglr.2018.08.005.

    Article  Google Scholar 

  • Haddeland, I., J. Heinke, H. Biemans, S. Eisner, M. Flörke, N. Hanasaki, M. Konzmann, F. Ludwig, Y. Masaki, J. Schewe, T. Stacke, Z. D. Tessler, Y. Wada & D. Wisser, 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences 111: 3251–3256.

    Article  CAS  Google Scholar 

  • Harlan, N. & C. Paradise, 2006. Do habitat size and shape modify abiotic factors and communities in artificial treeholes? Community Ecology 7: 211–222.

    Article  Google Scholar 

  • Helfman, G. S., 1981. The Advantage to Fishes of Hovering in Shade. Copeia 1981: 392.

    Article  Google Scholar 

  • Helfman, G. S., 1986. Fish Behaviour by Day, Night and Twilight The Behaviour of Teleost Fishes. Springer US, Boston, MA, MA: 366–387, http://link.springer.com/https://doi.org/10.1007/978-1-4684-8261-4_14.

  • Hladík, M. & J. Kubečka, 2004. The effect of water level fluctuation on tributary spawning migration of reservoir fish. Ecohydrology & Hydrobiology 4: 449–457.

    Google Scholar 

  • Hylkema, A., A. O. Debrot, R. Osinga, P. S. Bron, D. B. Heesink, A. K. Izioka, C. B. Reid, J. C. Rippen, T. Treibitz, M. Yuval & A. J. Murk, 2020. Fish assemblages of three common artificial reef designs during early colonization. Ecological Engineering 157: 105994. https://doi.org/10.1016/j.ecoleng.2020.105994.

    Article  Google Scholar 

  • Jůza, T., M. Vašek, M. Kratochvíl, P. Blabolil, M. Čech, V. Draštík, J. Frouzová, M. Muška, J. Peterka, M. Prchalová, M. Říha, M. Tušer & J. Kubečka, 2014. Chaos and stability of age-0 fish assemblages in a temperate deep reservoir: Unpredictable success and stable habitat use. Hydrobiologia 724: 217–234. https://doi.org/10.1007/s10750-013-1735-y.

    Article  Google Scholar 

  • Kahl, U., S. Hülsmann, R. J. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: Implications for fish stock management. Limnologica 38: 258–268.

    Article  Google Scholar 

  • Kalff, J., 2001. Limnology: inland water ecosystems. Prentice Hall, Upper Saddle River., https://www.pearson.ch/HigherEducation/Pearson/EAN/9780130337757/Limnology.

  • Karstens, S., M. Langer, H. Nyunoya, I. Čaraitė, N. Stybel, A. Razinkovas-Baziukas & R. Bochert, 2021. Constructed floating wetlands made of natural materials as habitats in eutrophicated coastal lagoons in the Southern Baltic Sea. Journal of Coastal Conservation 25: 44. https://doi.org/10.1007/s11852-021-00826-3.

    Article  Google Scholar 

  • Khanal, R., S. Uk, D. Kodikara, S. Siev & C. Yoshimura, 2021. Impact of water level fluctuation on sediment and phosphorous dynamics in Tonle Sap Lake, Cambodia. Water, Air, & Soil Pollution 232: 139. https://doi.org/10.1007/s11270-021-05084-5.

    Article  CAS  Google Scholar 

  • Krolová, M., H. Čížková & J. Hejzlar, 2012. Depth limit of littoral vegetation in a storage reservoir: A case study of Lipno Reservoir (Czech Republic). Limnologica 42: 165–174.

    Article  Google Scholar 

  • Krolová, M., H. Čížková, J. Hejzlar & S. Poláková, 2013. Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowledge and Management of Aquatic Ecosystems 7: 07.

    Article  Google Scholar 

  • Krolová, M. & J. Hejzlar, 2013. Protection and support of littoral macrophyte stands by breakwaters on differently exposed shores of the Lipno reservoir. Silva Gabreta 19: 57–71.

    Google Scholar 

  • Kubečka, J., 1993. Succession of fish communities in reservoirs of Central and Eastern Europe Comparative Reservoir Limnology and Water Quality Management. Springer Netherlands, Dordrecht: 153–168, https://link.springer.com/chapter/https://doi.org/10.1007/978-94-017-1096-1_11.

  • Kubečka, J., H. Balk, P. Blabolil, J. Frouzová, T. Kolařík, M. Kratochvíl, M. Muška, M. Prchalová, M. Říha, Z. Sajdlová, Soukalová, A. T. Souza, M. Tušer, L. Vejřík, & I. Vejříková, 2022. Methodology of monitoring fish communities in reservoirs and lakes. Biology Centre CAS, České Budějovice, https://www.hbu.cas.cz/data/files/HBU/FZE/Metodika_2022_EN.pdf.

  • Kubečka, J., M. Čtvrtlíková, M. Muška, & M. Hladík, 2020. Equipment for improving the ecological properties of water reservoirs and assembly with this equipment. Industrial Property Office of the Czech Republic. .

  • Kubečka, J., A. Souza, M. Říha, M. Muška, M. Vašek, D. Boukal, M. Prchalová, T. Jůza, M. Čech, V. Draštík, J. Frouzová, J. Hejzlar, J. Matěna, K. Moraes, J. Peterka, T. Randák, M. Šmejkal, M. Tušer, P. Blabolil, & L. Vejřík, 2019. Pikeperch paradise? Qualitative reflections on quantitative surveys of the Lipno reservoir (in Czech). Limnologické noviny / Czech Limnological News 1–6.

  • Kumar, P. S., & C. F. Carolin, 2019. Water withdrawal and conservation—Global scenario. Water in Textiles and Fashion Woodhead Publishing 61–75, https://linkinghub.elsevier.com/retrieve/pii/B978008102633500004X.

  • Lima, F. T. de, D. A. Reynalte-Tataje, & E. Zaniboni-Filho, 2017. Effects of reservoirs water level variations on fish recruitment. Neotropical Ichthyology Sociedade Brasileira de Ictiologia 15:, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-62252017000300211&lng=en&tlng=en.

  • Madhavan, N. & N. Neethiselvan, 2002. Effectiveness of fish aggregating devices in freshwater reservoir fishery. Fishery Technology 39: 11–14.

    Google Scholar 

  • Middelkoop, H., K. Daamen, D. Gellens, W. Grabs, J. C. J. Kwadijk, H. Lang, B. W. A. H. Parmet, B. Schädler, J. Schulla & K. Wilke, 2001. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change 49: 105–128.

    Article  CAS  Google Scholar 

  • Miranda, L. E. & M. Kratochvíl, 2008. Boat Electrofishing Relative to Anode Arrangement. Transactions of the American Fisheries Society Wiley 137: 1358–1362. https://doi.org/10.1577/T07-243.1.

    Article  Google Scholar 

  • De Moraes, K. R., A. T. Souza, D. Bartoň, P. Blabolil, M. Muška, M. Prchalová, T. Randák, M. Říha, M. Vašek, J. Turek, M. Tušer, V. Žlábek & J. Kubečka, 2023. Can a Protected Area Help Improve Fish Populations under Heavy Recreation Fishing? Water 15: 632. https://doi.org/10.3390/w15040632.

    Article  Google Scholar 

  • Morrisey, D. J., R. G. Cole, N. K. Davey, S. J. Handley, A. Bradley, S. N. Brown & A. L. Madarasz, 2006. Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture 252: 277–288.

    Article  Google Scholar 

  • Murphy, C. A., S. L. Johnson, W. Gerth, T. Pierce, & G. Taylor, 2021. Unintended Consequences of Selective Water Withdrawals From Reservoirs Alter Downstream Macroinvertebrate Communities. Water Resources Research 57: e2020WR029169

  • Muška, M., M. Tušer, J. Frouzová, V. Draštík, M. Čech, T. Jůza, M. Kratochvíl, T. Mrkvička, J. Peterka, M. Prchalová, M. Říha, M. Vašek & J. Kubečka, 2013. To migrate, or not to migrate: Partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia 707: 17–28. https://doi.org/10.1007/s10750-012-1401-9.

    Article  Google Scholar 

  • Nakamura, K., & G. Mueller, 2008. Review of the Performance of the Artificial Floating Island as a Restoration Tool for Aquatic Environments. World Environmental and Water Resources Congress 2008. American Society of Civil Engineers, Reston, VA: 1–10, http://ascelibrary.org/doi/https://doi.org/10.1061/40976%28316%29276.

  • Nakamura, K., M. Tsukidate, & Y. Shimatani, 1997. Characteristic Of Ecosystem Of An Artificial Vegetated Floating Island. WIT Transactions on Ecology and the Environment WIT Press 22:, https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/22/7809.

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2018. vegan: Community Ecology Package. https://cran.r-project.org/package=vegan.

  • Oliver, M. K. & K. R. McKaye, 1982. Floating Islands: A Means of Fish Dispersal in Lake Malawi. Africa. Copeia 1982: 748.

    Article  Google Scholar 

  • Pelicice, F. M., A. A. Agostinho & S. M. Thomaz, 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecologica 27: 9–16.

    Article  Google Scholar 

  • Persson, L. & L. A. Greenberg, 1990. Juvenile Competitive Bottlenecks: The Perch (Perca Fluviatilis)-Roach (Rutilus Rutilus) Interaction. Ecology 71: 44–56.

    Article  Google Scholar 

  • Prashant, & S. K. Billore, 2020. Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology 81: 1242–1249.

    Article  Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing Reference Index The R Core Team. , https://www.gnu.org/copyleft/gpl.html.

  • Riera, R., P. Sanchez-Jerez, M. Rodriguez & O. Monterroso, 2014. Artificial marine habitats favour a single fish species on a long-term scale: the dominance of Boops boops around off-shore fish cages. Scientia Marina CSIC Consejo Superior de Investigaciones Cientificas 78: 505–510.

    Google Scholar 

  • Říha, M., K. Ø. Gjelland, V. Děd, A. P. Eloranta, R. Rabaneda-Bueno, H. Baktoft, L. Vejřík, I. Vejříková, V. Draštík, M. Šmejkal, M. Holubová, T. Jůza, C. Rosten, Z. Sajdlová, F. Økland & J. Peterka, 2021. Contrasting structural complexity differentiate hunting strategy in an ambush apex predator. Scientific Reports 11: 17472. https://doi.org/10.1038/s41598-021-96908-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Říha, M., D. Ricard, M. Vašek, M. Prchalová, T. Mrkvička, T. Jůza, M. Čech, V. Draštík, M. Muška, M. Kratochvíl, J. Peterka, M. Tušer, J. Seďa, P. Blabolil, M. Bláha, J. Wanzenböck & J. Kubečka, 2015. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia 747: 111–131. https://doi.org/10.1007/s10750-014-2124-x.

    Article  Google Scholar 

  • Ripley, B., B. Venables, K. Hornik, A. Gebhardt, & D. Firth, 2013. Support Functions and Datasets for Venables and Ripley’s MASS. 170, http://www.stats.ox.ac.uk/pub/MASS4/.

  • Santos, L. N., F. G. Araújo & D. S. Brotto, 2008. Artificial structures as tools for fish habitat rehabilitation in a neotropical reservoir. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 896–908. https://doi.org/10.1002/aqc.931.

    Article  Google Scholar 

  • Sepulveda, A. J., D. S. Rutz, S. S. Ivey, K. J. Dunker & J. A. Gross, 2013. Introduced northern pike predation on salmonids in southcentral Alaska. Ecology of Freshwater Fish 22: 268–279. https://doi.org/10.1111/eff.12024.

    Article  Google Scholar 

  • Smith, J. A., M. B. Lowry & I. M. Suthers, 2015. Fish attraction to artificial reefs not always harmful: a simulation study. Ecology and Evolution 5: 4590–4602. https://doi.org/10.1002/ece3.1730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soukalová, K., J. Kubečka, T. Jůza, Kočvara L., Z. Sajdlová, & P. Z, 2020. Ichtyological assessment of Lipno Reservoir in 2019. České Budějovice.

  • Spange, D., 2018. Defining habitat demands of Wels catfish (Silurus glanis) in a Swedish lake-­ A look into muddy waters. Swedish University of Agricultural Sciences, https://stud.epsilon.slu.se/13188/.

  • Suresh, V. R., 2000. Floating islands: a unique fish aggregating method. Naga, the ICLARM Quarterly 23: 11–13.

    Google Scholar 

  • Vehanen, T., M. Piria, J. Kubečka, C. Skov, F. Kelly, H. Pokki, P. Eskelinen, M. Rahikainen, T. Keskinen, J. Artell, A. Romakkaniemi, J. Suić, Z. Adámek, R. Heimlich, P. Chalupa, H. Ženíšková, R. Lyach, S. Berg, K. Birnie-Gauvin, N. Jepsen, A. Koed, M. I. Pedersen, G. Rasmussen, P. Gargan, W. Roche, & R. Arlinghaus, 2020. Data collection systems and methodologies for the inland fisheries of Europe. Data collection systems and methodologies for the inland fisheries of Europe. FAO, Budapest, Hungary, http://www.fao.org/documents/card/en/c/ca7993en.

  • Verweij, M., I. Nagelkerken, D. de Graaff, M. Peeters, E. Bakker & G. van der Velde, 2006. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306: 257–268.

    Article  Google Scholar 

  • Weragoda, S. K., K. B. S. N. Jinadasa, D. Q. Zhang, R. M. Gersberg, S. K. Tan, N. Tanaka & N. W. Jern, 2012. Tropical Application of Floating Treatment Wetlands. Wetlands 32: 955–961. https://doi.org/10.1007/s13157-012-0333-5.

    Article  Google Scholar 

  • Winston, R. J., W. F. Hunt, S. G. Kennedy, L. S. Merriman, J. Chandler & D. Brown, 2013. Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecological Engineering 54: 254–265. https://doi.org/10.1016/j.ecoleng.2013.01.023.

    Article  Google Scholar 

  • Woolnough, D. A., J. A. Downing & T. J. Newton, 2009. Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish 18: 83–91. https://doi.org/10.1111/j.1600-0633.2008.00326.x.

    Article  Google Scholar 

  • Xiong, Y. J., J. Yin, K. T. Paw U, S. H. Zhao, G. Y. Qiu, & Z. Liu, 2020. How the three Gorges Dam affects the hydrological cycle in the mid-lower Yangtze River: a perspective based on decadal water temperature changes. Environmental Research Letters Institute of Physics Publishing 15: 014002. Doi: https://doi.org/10.1088/1748-9326/ab5d9a.

  • Yeh, N., P. Yeh & Y.-H. Chang, 2015. Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews 47: 616–622.

    Article  CAS  Google Scholar 

  • Zamora, D., E. Rodríguez & F. Jaramillo, 2020. Hydroclimatic effects of a hydropower reservoir in a tropical hydrological basin. Sustainability (switzerland) 12: 1–18.

    Google Scholar 

  • Zhao, Y., S. Liu & H. Shi, 2021. Impacts of dams and reservoirs on local climate change: a global perspective. Environmental Research Letters 16: 1–13. https://doi.org/10.1088/1748-9326/ac263c.

    Article  Google Scholar 

  • Zohary, T. & I. Ostrovsky, 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev, & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer New York, New York, NY, NY, http://link.springer.com/https://doi.org/10.1007/978-0-387-87458-6.

Download references

Acknowledgements

This work was supported by the project TH02030633 Floating green islands, a perspective alternative for improvement of ecological potential and support of littoral habitats in water reservoirs of the Technological Agency of the Czech Republic and the Czech National Agency of Agricultural Research, project QK22020134 Innovative fisheries management of a large reservoir. We thank Felipe Ribas, Kateřina Soukalová, Dan Bartoň, Vilém Děd, Prof. Piotr Frankiewicz, Luboš Kočvara, Ievgen Koliada, Tomáš Minařík, and Zdeněk Prachař for their help in operating floating islands and/or sorting the catch. We also thank Vltava River Authority (Povodí Vltavy) and Czech Angler’s Union for permission to carry out the experiments and for logistical support. Prof. Fernando M. Pelicice, anonymous reviewer, Dr. John Craig, Dr. Tomáš Jůza, and Dr. Jiří Peterka are greatly acknowledged for valuable suggestions to improve to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kubečka.

Ethics declarations

Conflict of interest

There are no conflicts of or competing interests.

Additional information

Handling editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, K.R., Souza, A.T., Muška, M. et al. Artificial floating islands: a promising tool to support juvenile fish in lacustrine systems. Hydrobiologia 850, 1969–1984 (2023). https://doi.org/10.1007/s10750-023-05204-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05204-8

Keywords

Navigation