Skip to main content
Log in

Extended bodies moving on geodesic trajectories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work investigates whether an extended test body obeying the Mathisson–Papapetrou–Dixon equations under the Ohashi–Kyrian–Semerák  spin supplementary condition can follow geodesic trajectories in curved spacetimes. In particular, we explore what are the requirements under which pole-dipole and pole-dipole-quadrupole approximated bodies moving in the Schwarzschild or Kerr spacetimes can follow equatorial geodesic trajectories. We do this exploration thoroughly in the pole-dipole case, while we focus just on particular trajectories in the pole-dipole-quadrupole case. Using the Ohashi–Kyrian–Semerák  spin supplementary condition to fix the center of the mass of a pole-dipole body has the advantage that the hidden momentum is eliminated. This allows the four-velocity to be parallel to the four-momentum, which provides a convenient framework for our investigation. We discuss how this feature can be recovered at a pole-dipole-quadrupole approximation and what are the consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. A similar phenomenon also appears in electrodynamics, and for details, we refer our readers to Refs.  [20, 21, 23, 33].

References

  1. Mathisson, M.: Neue mechanik materieller systemes. Acta Phys. Polon. 6, 163–2900 (1937)

    MATH  Google Scholar 

  2. Papapetrou, A.: Spinning test particles in general relativity. 1. Proc. Roy. Soc. Lond. A 209, 248–258 (1951). https://doi.org/10.1098/rspa.1951.0200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Corinaldesi, E., Papapetrou, E.: Spinning test-particles in general relativity. ii. In: Proceedings R. Soc. Lond. A, vol. 209, pp. 259–268, The Royal Society (1951)

  4. Dixon, W.: A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento (1955-1965) 34(2), 317–339 (1964)

    Article  MathSciNet  Google Scholar 

  5. Dixon, W.G.: Dynamics of extended bodies in general relativity. I. Momentum and angular momentum. Proc. R. Soc. London Ser. A 314(1519), 499–527 (1970). https://doi.org/10.1098/rspa.1970.0020

    Article  ADS  MathSciNet  Google Scholar 

  6. Dixon, W.G.: Dynamics of extended bodies in general relativity-ii. Moments of the charge-current vector. Proc. R. Soc. London. A. Math. Phys. Sci. 319(1539), 509–547 (1970)

    ADS  MathSciNet  Google Scholar 

  7. Dixon, W.G.: Dynamics of extended bodies in general relativity iii. Equations of motion. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 277(1264), 59–119 (1974)

    ADS  MathSciNet  Google Scholar 

  8. Semerák, O.: Spinning test particles in a Kerr field. 1. Mon. Not. Roy. Astron. Soc. 308, 863–875 (1999). https://doi.org/10.1046/j.1365-8711.1999.02754.x

    Article  ADS  Google Scholar 

  9. Kyrian, K., Semerák, O.: Spinning test particles in a Kerr field. Mon. Not. Roy. Astron. Soc. 382, 1922 (2007). https://doi.org/10.1111/j.1365-2966.2007.12502.x

    Article  ADS  Google Scholar 

  10. Saijo, M., Maeda, K.-I., Shibata, M., Mino, Y.: Gravitational waves from a spinning particle plunging into a Kerr black hole. Phys. Rev. D 58, 064005 (1998). https://doi.org/10.1103/PhysRevD.58.064005

    Article  ADS  Google Scholar 

  11. Hartl, M.D.: A Survey of spinning test particle orbits in Kerr space-time. Phys. Rev. D 67, 104023 (2003). https://doi.org/10.1103/PhysRevD.67.104023. arXiv:gr-qc/0302103 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Barausse, E., Buonanno, A.: An Improved effective-one-body Hamiltonian for spinning black-hole binaries. Phys. Rev. D 81, 084024 (2010). https://doi.org/10.1103/PhysRevD.81.084024. arXiv:0912.3517 [gr-qc]

    Article  ADS  Google Scholar 

  13. Taracchini, A., et al.: Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys. Rev. D 89(6), 061502 (2014). https://doi.org/10.1103/PhysRevD.89.061502. arXiv:1311.2544 [gr-qc]

    Article  ADS  Google Scholar 

  14. Jefremov, P.I., Tsupko, OYu., Bisnovatyi-Kogan, G.S.: Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times. Phys. Rev. D 91(12), 124030 (2015). https://doi.org/10.1103/PhysRevD.91.124030. arXiv:1503.07060 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Mukherjee, S.: Periastron shift for a spinning test particle around naked singularities. Phys. Rev. D 97(12), 124006 (2018). https://doi.org/10.1103/PhysRevD.97.124006

    Article  ADS  MathSciNet  Google Scholar 

  16. Mukherjee, S., Rajesh Nayak, K.: Off-equatorial stable circular orbits for spinning particles. Phys. Rev. D 98(8), 084023 (2018). https://doi.org/10.1103/PhysRevD.98.084023. arXiv:1804.06070 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Mukherjee, S.: Collisional Penrose process with spinning particles. Phys. Lett. B 778, 54–59 (2018). https://doi.org/10.1016/j.physletb.2018.01.003

    Article  ADS  Google Scholar 

  18. Semerák, O., Sramek, M.: Spinning particles in vacuum spacetimes of different curvature types. Phys. Rev. D 92(6), 064032 (2015). https://doi.org/10.1103/PhysRevD.92.064032. arXiv:1505.01069 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  19. Deriglazov, A.A., Guzmán Ramírez, W.: Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment. Phys. Lett. B 779, 210–213 (2018). https://doi.org/10.1016/j.physletb.2018.01.063. arXiv:1802.08079 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  20. Costa, L.F.O., Natário, J.: Center of mass, spin supplementary conditions, and the momentum of spinning particles. Fund. Theor. Phys. 179, 215–258 (2015). https://doi.org/10.1007/978-3-319-18335-0_6. arXiv:1410.6443 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  21. Costa, L.F.O., Lukes-Gerakopoulos, G., Semerák, O.: Spinning particles in general relativity: momentum-velocity relation for the Mathisson-Pirani spin condition. Phys. Rev. D 97(8), 084023 (2018). https://doi.org/10.1103/PhysRevD.97.084023. arXiv:1712.07281 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Lukes-Gerakopoulos, G., Seyrich, J., Kunst, D.: Investigating spinning test particles: spin supplementary conditions and the Hamiltonian formalism. Phys. Rev. D 90(10), 104019 (2014). https://doi.org/10.1103/PhysRevD.90.104019. arXiv:1409.4314 [gr-qc]

    Article  ADS  Google Scholar 

  23. Gralla, S.E., Harte, A.I., Wald, R.M.: Bobbing and kicks in electromagnetism and gravity. Phys. Rev. D 81, 104012 (2010). https://doi.org/10.1103/PhysRevD.81.104012

    Article  ADS  Google Scholar 

  24. Harris, E.G.: Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields. Am. J. Phys. 59(5), 421–425 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ciufolini, I., Wheeler, J.A.: Gravitation and inertia, vol. 101. Princeton University Press, Princeton (1995)

    Book  Google Scholar 

  26. Ruggiero, M.L., Tartaglia, A.: Gravitomagnetic effects. Nuovo Cim. B 117, 743–768 (2002). arXiv:gr-qc/0207065

    ADS  Google Scholar 

  27. Wald, R.M.: Gravitational spin interaction. Phys. Rev. D 6, 406–413 (1972). https://doi.org/10.1103/PhysRevD.6.406

    Article  ADS  Google Scholar 

  28. Mashhoon, B., Hehl, F.W., Theiss, D.S.: On the Gravitational effects of rotating masses - The Thirring–Lense Papers. Gen. Rel. Grav. 16, 711–750 (1984). https://doi.org/10.1007/BF00762913

    Article  ADS  MathSciNet  Google Scholar 

  29. Jantzen, R.T., Carini, P., Bini, D.: The Many faces of gravitoelectromagnetism. Ann. Phys. 215, 1–50 (1992). https://doi.org/10.1016/0003-4916(92)90297-Y. arXiv:gr-qc/0106043

    Article  ADS  MathSciNet  Google Scholar 

  30. Filipe Costa, L., Herdeiro, C.A.R.: A Gravito-electromagnetic analogy based on tidal tensors. Phys. Rev. D 78, 024021 (2008). https://doi.org/10.1103/PhysRevD.78.024021. arXiv:gr-qc/0612140

    Article  ADS  MathSciNet  Google Scholar 

  31. Natario, J.: Quasi-Maxwell interpretation of the spin-curvature coupling. Gen. Rel. Grav. 39, 1477–1487 (2007). https://doi.org/10.1007/s10714-007-0474-7. arXiv:gr-qc/0701067

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Costa, L.F.O., Natario, J.: Gravito-electromagnetic analogies. Gen. Rel. Grav. 46, 1792 (2014). https://doi.org/10.1007/s10714-014-1792-1. arXiv:1207.0465 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Costa, L.F.O., Natário, J., Zilhao, M.: Spacetime dynamics of spinning particles: exact electromagnetic analogies. Phys. Rev. D 93(10), 104006 (2016). https://doi.org/10.1103/PhysRevD.93.104006. arXiv:1207.0470 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. Hojman, S.A., Asenjo, F.A.: Spinning particles coupled to gravity and the validity of the universality of free fall. Class. Quant. Grav. 34(11), 115011 (2017). https://doi.org/10.1088/1361-6382/aa6ca2. arXiv:1610.08719 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. White, A., Raine, D., Dampier, M.: Radial infall of a spinning particle into a schwarzschild black hole. Classic. Quant. Grav. 17(18), 3681 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pirani, F.A.E.: On the Physical significance of the Riemann tensor. Acta Phys. Polon. 15, 389–405 (1956). https://doi.org/10.1007/s10714-009-0787-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Pirani, F.A.E.: On the Physical significance of the Riemann tensor. Gen. Rel. Grav. 41, 1215 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. Tulczyjew, W.: Motion of multipole particles in general relativity theory. Acta Phys. Pol. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  39. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400–406 (1949). https://doi.org/10.1103/RevModPhys.21.400

    Article  ADS  MATH  Google Scholar 

  40. Steinhoff, J.: Spin gauge symmetry in the action principle for classical relativistic particles, arXiv:1501.04951 [gr-qc]

  41. Ohashi, A.: Multipole particle in relativity. Phys. Rev. D 68(4), 044009 (2003). https://doi.org/10.1103/PhysRevD.68.044009. arXiv:gr-qc/0306062 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Steinhoff, J., Puetzfeld, D.: Multipolar equations of motion for extended test bodies in General Relativity. Phys. Rev. D 81, 044019 (2010). https://doi.org/10.1103/PhysRevD.81.044019. arXiv:0909.3756 [gr-qc]

    Article  ADS  Google Scholar 

  43. Steinhoff, J., Puetzfeld, D.: Influence of internal structure on the motion of test bodies in extreme mass ratio situations. Phys. Rev. D 86, 044033 (2012). https://doi.org/10.1103/PhysRevD.86.044033. arXiv:1205.3926 [gr-qc]

    Article  ADS  Google Scholar 

  44. Ehlers, J., Rudolph, E.: Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity. Gen. Relat. Gravit. 8(3), 197–217 (1977). https://doi.org/10.1007/BF00763547

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bini, D., Fortini, P., Geralico, A., Ortolan, A.: Quadrupole effects on the motion of extended bodies in Kerr spacetime. Class Quant. Grav. 25, 125007 (2008). https://doi.org/10.1007/BF00763547. arXiv:0910.2842 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Bini, D., Geralico, A.: Deviation of quadrupolar bodies from geodesic motion in a Kerr spacetime. Phys. Rev. D 89(4), 044013 (2014). https://doi.org/10.1103/PhysRevD.89.044013. arXiv:1311.7512 [gr-qc]

    Article  ADS  Google Scholar 

  47. Bini, D., Geralico, A.: Extended bodies in a Kerr spacetime: exploring the role of a general quadrupole tensor. Class. Quant. Grav. 31, 075024 (2014). https://doi.org/10.1088/0264-9381/31/7/075024. arXiv:1408.5484 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Harte, A.I.: Extended-body motion in black hole spacetimes: What is possible? Phys. Rev. D 102(12), 124075 (2020). https://doi.org/10.1103/PhysRevD.102.124075. arXiv:2011.00110 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  49. Geroch, R.P.: Multipole moments. I. Flat space. J. Math. Phys. 11, 1955–1961 (1970). https://doi.org/10.1063/1.1665348

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Geroch, R.P.: Multipole moments. II. Curved space. J. Math. Phys. 11, 2580–2588 (1970). https://doi.org/10.1063/1.1665427

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hansen, R.: Multipole moments of stationary space-times. J. Math. Phys. 15, 46–52 (1974). https://doi.org/10.1063/1.1666501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Thorne, K.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980). https://doi.org/10.1103/RevModPhys.52.299

    Article  ADS  MathSciNet  Google Scholar 

  53. Carter, B.: Hamilton–Jacobi and schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10(4), 280–310 (1968). https://doi.org/10.1007/BF03399503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Harms, E., Lukes-Gerakopoulos, G., Bernuzzi, S., Nagar, A.: Spinning test body orbiting around a Schwarzschild black hole: circular dynamics and gravitational-wave fluxes. Phys. Rev. D 94(10), 104010 (2016). https://doi.org/10.1103/PhysRevD.94.104010. arXiv:1609.00356 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  55. Chandrasekhar, S.: The mathematical theory of black holes, vol. 69. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

S.M. wish to acknowledge Narayan Banerjee for some useful interactive sessions at the earlier stage of this work. The authors would like to express their gratitude to L. Filipe O. Costa for the clarification he has provided and for pointing out some important consequences of the present work. They would also like to thank the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, where parts of this work were carried out during academic visits. The authors wish to thank the referees for their constructive criticism on the article. S.M. and G.L.-G. have been supported by the fellowship Lumina Quaeruntur No. LQ100032102 of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Lukes-Gerakopoulos, G. & Nayak, R.K. Extended bodies moving on geodesic trajectories. Gen Relativ Gravit 54, 113 (2022). https://doi.org/10.1007/s10714-022-02985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02985-6

Keywords

Navigation