Skip to main content
Log in

Application of a dielectric breakdown induced by high-power lasers for a laboratory simulation of meteor plasma

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Spectra of meteor plasma, their dynamics and dominant spectral features are usually a subject of mathematical modelling and computations. In our study, on the other hand, we describe and evaluate the advantages and limitations of the experimental techniques employed for meteor spectra simulations. The experiments are performed by ablating meteorite samples using a series of laser sources, i.e. a large terawatt−class gas laser infrastructure PALS, a high-power Ti:Sapphire femtosecond laser, and laboratory Nd:YAG and ArF excimer lasers. We demonstrate that, notwithstanding the importance of theoretical spectra computation, laboratory experiments may remarkably enhance the qualitative and quantitative evaluation of the meteor emission spectra measured, as well as the assignment of important spectral features therein. We also perform completing experiments to compare the laser-target interaction observed with the expected dynamics of evaporation and disintegration of a real meteoroid body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dyrud, L.P., Denney, K., Close, S., Oppenheim, M., Chau, J., Ray, L.: Meteor velocity determination with plasma physics. Atmos. Chem. Phys. 4, 817–824 (2004). https://doi.org/10.5194/acp-4-817-2004

    Article  ADS  Google Scholar 

  2. Baggley, W.: Meteors and Atmospheres. In: Halliday, I. and McINtosh, B. (eds.) Solid Particles in the Solar System. pp. 85–100. IAU (1980)

  3. Spurny, P., Ceplecha, Z., Borovicka, J.: Earth-grazing fireball: Czechoslovakia, Poland, October 13, 1990, 03h27m16s UT. WGN, J. Int. Meteor Organ. 19, 13 (1990)

  4. Siraj, A., Loeb, A.: Discovery of a Meteor of Interstellar Origin. (2019)

  5. Gounelle, M., Spurny, P., Bland, P.A.: The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteorit. Planet. Sci. 41, 135–150 (2006). https://doi.org/10.1111/j.1945-5100.2006.tb00198.x

    Article  ADS  Google Scholar 

  6. Gritsevich, M.I.: The Pribram, Lost City, Innisfree, and Neuschwanstein falls: An analysis of the atmospheric trajectories. Sol. Syst. Res. 42, 372–390 (2008). https://doi.org/10.1134/S003809460805002X

    Article  ADS  Google Scholar 

  7. List of meteorites with a complete “lineage,” https://cs.wikipedia.org/wiki/Seznam_meteoritů_s_rodokmenem

  8. Silber, E.A., Boslough, M., Hocking, W.K., Gritsevich, M., Whitaker, R.W.: Physics of meteor generated shock waves in the Earth’s atmosphere – A review, (2018)

  9. Svetsov, V.V., Nemtchinov, I.V., Teterev, A.V.: Disintegration of Large Meteoroids in Earth’s Atmosphere: Theoretical Models. Icarus. 116, 131–153 (1995). https://doi.org/10.1006/ICAR.1995.1116

    Article  ADS  Google Scholar 

  10. Drouard, A., Vernazza, P., Loehle, S., Gattacceca, J., Vaubaillon, J., Zanda, B., Birlan, M., Bouley, S., Colas, F., Eberhart, M., Hermann, T., Jorda, L., Marmo, C., Meindl, A., Oefele, R., Zamkotsian, F., Zander, F.: Probing the use of spectroscopy to determine the meteoritic analogues of meteors. (2018). https://doi.org/10.1051/0004-6361/201732225

  11. Ferus, M., Koukal, J., Lenža, L., Srba, J., Kubelík, P., Laitl, V., Zanozina, E.M., Váňa, P., Kaiserová, T., Knížek, A., Rimmer, P., Chatzitheodoridis, E., Civiš, S.: Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples. Astron. Astrophys. (2018). https://doi.org/10.1051/0004-6361/201629950

  12. Trigo-Rodriguez, J.M., Llorca, J., Fabregat, J.: Chemical abundances determined from meteor spectra - II. Evidence for enlarged sodium abundances in meteoroids. Mon. Not. R. Astron. Soc. 348, 802–810 (2004). https://doi.org/10.1111/j.1365-2966.2004.07389.x

    Article  ADS  Google Scholar 

  13. Trigo-Rodriguez, J.M., Llorca, J., Borovicka, J., Fabregat, J.: Chemical abundances determined from meteor spectra: I. Ratios of the main chemical elements. Meteorit. Planet. Sci. 38, 1283–1294 (2003)

    Article  ADS  Google Scholar 

  14. Vojacek, V., Borovicka, J., Koten, P., Spurny, P., Stork, R.: Catalogue of representative meteor spectra. Astron. Astrophys. 580, (2015). https://doi.org/10.1051/0004-6361/201425047

  15. W. R., G. H. B., H. H. T., C. R. M., R.M. and F.W.D.: Obituary Notices of Fellows Deceased. Proc. R. Soc. A Math. Phys. Eng. Sci. 80, i–xxxviii (1908). https://doi.org/10.1098/rspa.1908.0047

  16. Jürgen, R.: International Meteor Organization Monograph No 3: Handbook for photographic meteor observations. The International Meteor Organization (2002)

  17. Cremers, D.A., Radziemski, L.J.: History and fundamentals of LIBS. (2006)

  18. Matthews, J.A.: optical emission spectroscopy (OES). Encycl. Environ. Chang. (2014). https://doi.org/10.4135/9781446247501.n2729

  19. Radziemski, L.J.: From LASER to LIBS, the path of technology development. In: Spectrochimica Acta - Part B Atomic Spectroscopy (2002)

  20. Petrakiew, A., Dimitrov, G., Beltschew, S., Nikolov, N.: Mikrospektraluntersuchungen des Meteoriten Pawel. Jenaer Rundschau. (1972)

  21. Dell’Aglio, M., De Giacomo, A., Gaudiuso, R., De Pascale, O., Senesi, G.S., Longo, S.: Laser Induced Breakdown Spectroscopy applications to meteorites: Chemical analysis and composition profiles. Geochim. Cosmochim. Acta. 74, 7329–7339 (2010). https://doi.org/10.1016/j.gca.2010.09.018

    Article  ADS  Google Scholar 

  22. Thompson, J.R., Wiens, R.C., Barefield, J.E., Vaniman, D.T., Newsom, H.E., Clegg, S.M.: Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites. J. Geophys. Res. 111, (2006). https://doi.org/10.1029/2005JE002578

  23. Senesi, G.S.: Laser-Induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth-Science Rev. 139, 231–267 (2014). https://doi.org/10.1016/j.earscirev.2014.09.008

    Article  ADS  Google Scholar 

  24. Dell’Aglio, M., De Giacomo, A., Gaudiuso, R., De Pascale, O., Longo, S.: Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system. Spectrochim. acta part B-atomic Spectrosc. 101, 68–75 (2014). https://doi.org/10.1016/j.sab.2014.07.011

    Article  ADS  Google Scholar 

  25. De Giacomo, A.: A novel approach to elemental analysis by Laser Induced Breakdown Spectroscopy based on direct correlation between the electron impact excitation cross section and the optical emission intensity. Spectrochim. acta part B-atomic Spectrosc. 66, 661–670 (2011). https://doi.org/10.1016/j.sab.2011.09.003

    Article  ADS  Google Scholar 

  26. Hornackova, M., Plavcan, J., Rakovsky, J., Porubcan, V., Ozdin, D., Veis, P.: Calibration-free laser induced breakdown spectroscopy as an alternative method for found meteorite fragments analysis. Eur. Phys. journal-applied Phys. 66, (2014). https://doi.org/10.1051/epjap/2014130465

  27. Ozdin, D., Plavcan, J., Hornackova, M., Uher, P., Porubcan, V., Veis, P., Rakovsky, J., Toth, J., Konecny, P., Svoren, J.: Mineralogy, petrography, geochemistry, and classification of the Kosice meteorite. Meteorit. Planet. Sci. 50, 864–879 (2015). https://doi.org/10.1111/maps.12405

    Article  ADS  Google Scholar 

  28. Lasue, J., Wiens, R.C., Clegg, S.M., Vaniman, D.T., Joy, K.H., Humphries, S., Mezzacappa, A., Melikechi, N., McInroy, R.E., Bender, S.: Remote laser-induced breakdown spectroscopy (LIBS) for lunar exploration. J. Geophys. Res. 117, (2012). https://doi.org/10.1029/2011JE003898

  29. Ferus, M., Koukal, J., Lenza, L., Srba, J., Kubelik, P., Laitl, V., Zanozina, E.M., Vana, P., Kaiserova, T., Knizek, A., Civis, S.: Recording and evaluation of high resolution optical meteor spectra and comparative laboratory measurements using laser ablation of solid meteorite specimens. In: International Conference on Transparent Optical Networks (2017)

  30. Tognoni, E., Cristoforetti, G., Legnaioli, S., Palleschi, V.: Review Calibration Free Laser- Induced Breakdown Spectroscopy: State of the art. Spectrochim. Acta Part B At. Spectrosc. 65, 1–14 (2010)

    Article  ADS  Google Scholar 

  31. Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A., Tognoni, E.: New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy. Appl. Spectrosc. 53, 960–964 (1999). https://doi.org/10.1366/0003702991947612

    Article  ADS  Google Scholar 

  32. Ferus, M., Kubelík, P., Petera, L., Lenža, L., Koukal, J., Křivková, A., Laitl, V., Knížek, A., Saeidfirozeh, H., Pastorek, A., Kalvoda, T., Juha, L., Dudžák, R., Civiš, S., Chatzitheodoridis, E., Krůs, M.: Main spectral features of meteors studied using a terawatt-class high-power laser. Astron. Astrophys. 630, A127 (2019). https://doi.org/10.1051/0004-6361/201935816

    Article  Google Scholar 

  33. Pirri, A.N.: Theory for laser simulation of hypervelocity impact. Phys. Fluids. 20, 221–228 (1977). https://doi.org/10.1063/1.861859

    Article  ADS  Google Scholar 

  34. Managadze, G.G., Brinckerhoff, W.B., Chumikov, A.E.: Molecular synthesis in hypervelocity impact plasmas on the primitive Earth and in interstellar clouds. Geophys. Res. Lett. 30, (2003). https://doi.org/10.1029/2002GL016422

  35. McKay, C.P., Borucki, W.J.: Organic synthesis in experimental impact shocks. Science (80-. ). 276, 390–392 (1997). https://doi.org/10.1126/science.276.5311.390

  36. Scattergood, T.W., McKay, C.P., Borucki, W.J., Giver, L.P., van Ghyseghem, H., Parris, J.E., Miller, S.L.: Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas, and UV light. Icarus. 81, 413–428 (1989). https://doi.org/10.1016/0019-1035(89)90061-4

  37. Navarro-González, R., Navarro, K.F., Coll, P., McKay, C.P., Stern, J.C., Sutter, B., Archer Jr., P.D., Buch, A., Cabane, M., Conrad, P.G., Eigenbrode, J.L., Franz, H.B., Freissinet, C., Glavin, D.P., Hogancamp, J.V., McAdam, A.C., Malespin, C.A., Martín-Torres, F.J., Ming, D.W., Morris, R.V., Prats, B., Raulin, F., Rodríguez-Manfredi, J.A., Szopa, C., Zorzano-Mier, M.-P., Mahaffy, P.R., Atreya, S., Trainer, M.G., Vasavada, A.R.: Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory. J. Geophys. Res. Planets. 124, 94–113 (2019). https://doi.org/10.1029/2018JE005852

    Article  ADS  Google Scholar 

  38. Borovicka, J.: A fireball spectrum analysis. Astron. Astrophys. 279, 627–645 (1993)

    ADS  Google Scholar 

  39. Madiedo, J.M., Ortiz, J.L., Trigo-Rodríguez, J.M., Dergham, J., Castro-Tirado, A.J., Cabrera-Caño, J., Pujols, P.: Analysis of bright Taurid fireballs and their ability to produce meteorites. Icarus. 231, 356–364 (2014). https://doi.org/10.1016/j.icarus.2013.12.025

    Article  ADS  Google Scholar 

  40. Jenniskens, P.: Quantitative meteor spectroscopy: Elemental abundances. Adv. Sp. Res. 39, 491–512 (2007). https://doi.org/10.1016/j.asr.2007.03.040

    Article  ADS  Google Scholar 

  41. Champion, K.S.W., Cole, A.E., Kantor, A.J.: Standard and Reference Atmospheres. In: Handbook of Geophysics and the Space Environment (ed. Adolf S. Jursa). pp. 14–1–14–43 (1985)

  42. Hřebiček, J., Rus, B., Lagron, J.C., Polan, J., Havlíček, T., Mocek, T., Nejdl, J., Pešlo, M.: 25TW Ti:sapphire laser chain at PALS. In: Diode-Pumped High Energy and High Power Lasers; ELI: Ultrarelativistic Laser-Matter Interactions and Petawatt Photonics; and HiPER: the European Pathway to Laser Energy (2011)

  43. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Prag, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., Ullschmied, J.: The Prague Asterix Laser System. Phys. Plasmas. 8, 2495–2501 (2001). https://doi.org/10.1063/1.1350569

    Article  ADS  Google Scholar 

  44. Andor: Echelle Spectograph Overview | Flexible Spectroscopy Tool, https://andor.oxinst.com/learning/view/article/echelle-spectrographs-a-flexible-tool-forspectroscopy

  45. NV/SA, K.I. (BELGIUM): VR measurement principle, https://www.youtube.com/watch?v=UuKAeTGIO5w

  46. Loehle, S., Zander, F., Hermann, T., Eberhart, M., Meindl, A., Oefele, R., Vaubaillon, J., Colas, F., Vernazza, P., Drouard, A., Gattacceca, J.: Experimental Simulation of Meteorite Ablation during Earth Entry Using a Plasma Wind Tunnel. Astrophys. J. 837, 112 (2017). https://doi.org/10.3847/1538-4357/aa5cb5

  47. Martikainen, J., Penttilä, A., Gritsevich, M., Lindqvist, H., Muinonen, K.: Spectral modeling of meteorites at UV-Vis-NIR wavelengths. J. Quant. Spectrosc. Radiat. Transf. 204, (2018). https://doi.org/10.1016/j.jqsrt.2017.09.017

  48. Libourel, G., Nakamura, A.M., Beck, P., Potin, S., Ganino, C., Jacomet, S., Ogawa, R., Hasegawa, S., Michel, P.: Hypervelocity impacts as a source of deceiving surface signatures on iron-rich asteroids. Sci. Adv. 5, (2019). https://doi.org/10.1126/sciadv.aav3971

  49. Brandis, A.M., Johnston, C.O., Cruden, B.A., Prabhu, D.K.: Equilibrium Radiative Heating from 9.5 to 15.5km/s for Earth Atmospheric Entry. J. Thermophys. HEAT Transf. 31, 178–192 (2017). https://doi.org/10.2514/1.T4878

    Article  Google Scholar 

  50. Adolfsson, L.G., Gustafson, B.Å.S.: Effect of meteoroid rotation on atmospheric entry heating and meteor beginning height. Planet. Space Sci. 42, 593–598 (1994). https://doi.org/10.1016/0032-0633(94)90034-5

    Article  ADS  Google Scholar 

  51. Rogers, L.A., Hill, K.A., Hawkes, R.L.: Mass loss due to sputtering and thermal processes in meteoroid ablation. Planet. Space Sci. 53, 1341–1354 (2005). https://doi.org/10.1016/J.PSS.2005.07.002

    Article  ADS  Google Scholar 

  52. Pishdast, M., Majd, A.E., Tehrani, M.K.: The influence of plasma shielding effect on laser-ablated copper samples: a focus on signal-to-background ratio and plasma expansion. Laser Part. Beams. 34, 493–505 (2016). https://doi.org/10.1017/S0263034616000355

    Article  ADS  Google Scholar 

  53. Ceplecha, Z., Revelle, D.O.: Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35–54 (2005). https://doi.org/10.1111/j.1945-5100.2005.tb00363.x

    Article  ADS  Google Scholar 

  54. Hawkes, R.L., Milley, E.P., Ehrman, J.M., Woods, R.M., Hoyland, J.D., Pettipas, C.L., Tokaryk, D.W.: What can we learn about atmospheric meteor ablation and light production from laser ablation? Earth Moon Planets. 102, 331–336 (2008). https://doi.org/10.1007/s11038-007-9186-y

    Article  ADS  Google Scholar 

  55. Vondrak, T., Plane, J.M.C., Broadley, S., Janches, D.: A chemical model of meteoric ablation. Atmos. Chem. Phys. 8, 7015–7031 (2008)

    Article  ADS  Google Scholar 

  56. Ferus, M., Petera, L., Koukal, J., Lenža, L., Drtinová, B., Haloda, J., Matýsek, D., Pastorek, A., Laitl, V., Poltronieri, R.C., Domingues, M.W., Gonçalves, G., del Olmo Sato, R., Knížek, A., Kubelík, P., Křivková, A., Srba, J., di Pietro, C.A., Bouša, M., Vaculovič, T., Civiš, S.: Elemental composition, mineralogy and orbital parameters of the Porangaba meteorite. Icarus. (2020). https://doi.org/10.1016/j.icarus.2020.113670

  57. Konjević, N.: Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000). J. Phys. Chem. Ref. Data. 31, 819 (2002). https://doi.org/10.1063/1.1486456

    Article  ADS  Google Scholar 

  58. Berezhnoy, A.A., Borovicka, J.: Formation of molecules in bright meteors. Icarus. 210, 150–157 (2010). https://doi.org/10.1016/j.icarus.2010.06.036

    Article  ADS  Google Scholar 

  59. Foschini, L.: On the interaction of radio waves with meteoric plasma. Astron. Astrophys. 341, 634–639 (1999)

    ADS  Google Scholar 

  60. Jenniskens, P., Laux, C.O., Wilson, M.A., Shaller, E.L.: The Mass and Speed Dependence of Meteor Air Plasma Temperatures. Astrobiology. 4, 81–94 (2004)

    Article  ADS  Google Scholar 

  61. Kramida, A., Ralchenko, Y., Reader, J., NIST ASD Team: NIST Atomic Spectra Database (ver. 5.3), National Institute of Standards and Technology, Gaithersburg, MD., (2015)

  62. Riley, D., Weaver, I., Morrow, T., Lamb, M.J., Martin, G.W., Doyle, L.A., Al-Khateeb, A., Lewis, C.L.S.: Spectral simulation of laser ablated magnesium plasmas. Plasma Sources Sci. Technol. (2000). https://doi.org/10.1088/0963-0252/9/3/304

  63. Babankova, D., Civis, S., Juha, L., Bittner, M., Cihelka, J., Pfeifer, M., Skala, J., Bartnik, A., Fiedorowicz, H., Mikolajczyk, J., Ryc, L., Sedivcova, T.: Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A. 110, 12113–12120 (2006). https://doi.org/10.1021/jp063689o

    Article  Google Scholar 

  64. Civiš, M., Ferus, M., Knížek, A., Kubelík, P., Kamas, M., Španěl, P., Dryahina, K., Shestivska, V., Juha, L., Skřehot, P., Laitl, V., Civiš, S.: Spectroscopic investigations of high-energy-density plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 18, (2016). https://doi.org/10.1039/c6cp05025e

  65. Borovicka, J.: Two components in meteor spectra. Planet. Space Sci. 42, 145–150 (1994). https://doi.org/10.1016/0032-0633(94)90025-6

    Article  ADS  Google Scholar 

  66. Abe, S., Ebizuka, N., Murayama, H., Ohtsuka, K., Sugimoto, S., Yamamoto Masa-Yuki, M.Y., Yano, H., Watanabe, J.I., Borovička, J.: Video and photographic spectroscopy of 1998 and 2001 Leonid persistent trains from 300 to 930 nm. Earth, Moon Planets. (2004). https://doi.org/10.1007/s11038-005-9031-0

  67. Borovička, J., Berezhnoy, A.A.: Radiation of molecules in Benešov bolide spectra. Icarus. 248–265 (2016)

  68. Berezhnoy, A.A., Borovička, J., Santos, J., Rivas-Silva, J.F., Sandoval, L., Stolyarov, A.V., Palma, A.: The CaO orange system in meteor spectra. Planet. Space Sci. 151, 27–32 (2018). https://doi.org/10.1016/J.PSS.2017.10.007

    Article  ADS  Google Scholar 

  69. Madiedo, J.M., Trigo-Rodriguez, J.M., Konovalova, N., Williams, I.P., Castro-Tirado, A.J., Ortiz, J.L., Cabrera-Cano, J.: The 2011 October Draconids outburst - II. Meteoroid chemical abundances from fireball spectroscopy. Mon. Not. R. Astron. Soc. 433, 571–580 (2013). https://doi.org/10.1093/mnras/stt748

    Article  ADS  Google Scholar 

  70. Borovicka, J., Stork, R., Bocek, J.: First results from video spectroscopy of 1998 Leonid meteors. Meteorit. Planet. Sci. 34, 987–994 (1999)

    Article  ADS  Google Scholar 

  71. Borovička, J., Betlem, H.: Spectral analysis of two Perseid meteors. Planet. Space Sci. 45, 563–575 (1997). https://doi.org/10.1016/S0032-0633(97)00024-X

    Article  ADS  Google Scholar 

  72. Hoof, P. van: The Atomic Line List v2.05b21, http://www.pa.uky.edu/~peter/newpage/

  73. Nittler, L.R., McCoy, T.J., Clark, P.E., Murphy, M.E., Trobka, J.I., Jarosewich, E., Trombka, J.I., Jarosewich, E.: Bulk element compositions of meteorites: a guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarct. Meteor. Res. 17, 233–253 (2004)

    ADS  Google Scholar 

  74. Ortega Varela De Seijas, M., Vaubaillon, J.: Analyzing Meteor Composition Using UV Spectroscopy, (2017)

  75. Civis, S., Ferus, M., Kubelik, P., Jelinek, P., Chernov, V.E.: Potassium spectra in the 700–7000 cm(−1) domain: Transitions involving f-, g-, and h-states. Astron. Astrophys. 541, (2012). https://doi.org/10.1051/0004-6361/201218867

  76. Civis, S., Ferus, M., Chernov, V.E., Zanozina, E.M.: Infrared transitions and oscillator strengths of Ca and Mg. Astron. Astrophys. 554, (2013). https://doi.org/10.1051/0004-6361/201321052

  77. Civis, S., Ferus, M., Kubelik, P., Chernov, V.E., Zanozina, E.M.: Li I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths. Astron. Astrophys. 545, (2012). https://doi.org/10.1051/0004-6361/201219852

  78. Civis, S., Ferus, M., Kubelik, P., Chernov, V.E., Zanozina, E.M.: Fourier transform infrared emission spectra of atomic rubidium: g- and h-states. J. Phys. B - At. Mol. Opt. Phys. 45, (2012). https://doi.org/10.1088/0953-4075/45/17/175002

  79. Civis, S., Ferus, M., Kubelik, P., Jelinek, P., Chernov, V.E., Zanozina, E.M.: Na I spectra in the 1.4–14 micron range: transitions and oscillator strengths involving f-, g-, and h- states. Astron. Astrophys. 542, (2012). https://doi.org/10.1051/0004-6361/201219215

  80. Civis, S., Matulkova, I., Cihelka, J., Kubelik, P., Kawaguchi, K., Chernov, V.E.: Time-resolved FTIR emission spectroscopy of Cu in the 1800–3800 cm(−1) region: transitions involving f and g states and oscillator strengths. J. Phys. B-ATOMIC Mol. Opt. Phys. 44, (2011). https://doi.org/10.1088/0953-4075/44/2/025002

  81. Civis, S., Ferus, M., Chernov, V.E., Zanozina, E.M., Juha, L.: Time-resolved Fourier transform infrared spectra of Sr: h-, g-levels and oscillator strengths. J. Quant. Spectrosc. Radiat. Transf. 129, 324–332 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.010

    Article  ADS  Google Scholar 

  82. Civis, S., Ferus, M., Kubelik, P., Jelinek, P., Chernov, V.E., Knyazev, M.Y.: Laser ablation of CsI: time-resolved Fourier-transform infrared spectra of atomic cesium in the 800–8000 cm(−1) range. J. Opt. Soc. Am. B-OPTICAL Phys. 29, 1112–1118 (2012)

    Article  ADS  Google Scholar 

  83. Kawaguchi, K., Sanechika, N., Nishimura, Y., Fujimori, R., Oka, T.N., Hirahara, Y., Jaman, A.I., Civis, S.: Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products. Chem. Phys. Lett. 463, 38–41 (2008). https://doi.org/10.1016/j.cplett.2008.08.018

    Article  ADS  Google Scholar 

  84. Civis, S., Kubelik, P., Ferus, M.: Time-Resolved Fourier Transform Emission Spectroscopy of He/CH4 in a Positive Column Discharge. J. Phys. Chem. A. 116, 3137–3147 (2012). https://doi.org/10.1021/jp211772d

    Article  Google Scholar 

  85. Civiš, S., Ferus, M., Kubelík, P., Jelínek, P., Chernov, V.E., Knyazev, M.Y.: Laser ablation of CsI: Time-resolved Fourier-transform infrared spectra of atomic cesium in the 800–8000 cm−1range. J. Opt. Soc. Am. B Opt. Phys. 29, (2012). https://doi.org/10.1364/JOSAB.29.001112

Download references

Acknowledgments

MF thanks the Czech Science Foundation project reg. no. 18-27653S. Research infrastructures and the scientific team of the Laboratory of High-Resolution Spectroscopy is supported by the project ERDF/ESF “Centre of Advanced Applied Sciences” (No. CZ.02.1.01/0.0/0.0/16_019/0000778). PALS is supported by the Ministry of Education, Youth, and Sports of the Czech Republic (Project No. LM2018114). Meteor observation network of the Observatory Valašské Meziříčí and the J. Heyrovský Institute of Physical Chemistry is supported by CAS grant for regional cooperation, reg. no. R200401801.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miroslav Krůs or Martin Ferus.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution of the first two authors is the same

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Křivková, A., Petera, L., Laitl, V. et al. Application of a dielectric breakdown induced by high-power lasers for a laboratory simulation of meteor plasma. Exp Astron 51, 425–451 (2021). https://doi.org/10.1007/s10686-020-09688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-020-09688-3

Keywords

Navigation