Skip to main content

Advertisement

Log in

Pattern to process, research to practice: remote sensing of plant invasions

  • Review
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Processes that drive plant invasions play out across multiple spatial and temporal scales. Understanding individual steps along the introduction-naturalization-invasion continuum and its drivers is crucial for management. This review, targeting the broad audience of invasion scientists, field ecologists and land managers, summarizes the state-of-the-art and potential of remote sensing (RS) in plant invasion science and management. It identifies challenges and research gaps, discusses the discrepancies between technology, science and practice, and suggests ways of addressing some of these issues. Mapping, modelling and predicting invasion processes across scales is a major challenge since they are dynamic and highly complex. Integration of RS data collected at different spatial and temporal scales (“rocking” across scales) has the potential to elucidate the dynamics of invasions and to reveal its drivers, thereby improving the efficiency of control measures. Increasing spatial/temporal resolution of imagery from satellites and drones has much potential to (i) precisely identify even less conspicuous invasive species; (ii) map invasion dynamics; and (iii) provide information on environmental variables and landscape structure at scales fine enough to capture underlying ecological processes. Until now, RS research has focussed primarily on spatio-temporal patterns of plant invasions. Other more challenging topics, such as early monitoring, and revealing the invasion mechanisms and impacts have received less attention. Despite the power of RS technology and recent developments, large discrepancies remain between possibilities and actual implications in research and practical management of invasions. Although recent technological advances, such as powerful algorithms, cloud solutions, and data streams from citizen science, might overcome some limitations, the mutual dialog among field ecologists, managers, invasion scientists and RS specialists remains crucial; our review contributes to such communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Accessed from the SCOPUS database using the search string: (TITLE-ABS-KEY (remote AND sensing) AND TITLE-ABS-KEY (invasive OR invasion*) AND TITLE-ABS-KEY (plant OR vegetation) AND (LIMIT-TO (DOCTYPE,”ar”)))

Fig. 5

Similar content being viewed by others

References

  • Ahmed N, Atzberger C, Zewdie W (2020) Integration of remote sensing and bioclimatic data for prediction of invasive species distribution in data-poor regions: a review on challenges and opportunities. Environ Syst Res 9:32

    Article  Google Scholar 

  • Andrew ME, Ustin SL (2008) The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens Environ 112(12):4301–4317

    Article  Google Scholar 

  • Andrew ME, Ustin SL (2010) The effects of temporally variable dispersal and landscape structure on invasive species spread. Ecol Appl 20(3):593–608

    Article  PubMed  Google Scholar 

  • Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T, Boardman J, Green RO (2008) Invasive plants transform the three-dimensional structure of rain forests. Proc Natl Acad Sci 105(11):4519–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Natl Acad Sci USA 102:4383–4386

    Article  CAS  PubMed Central  Google Scholar 

  • Bailey RG (1985) The factor of scale in ecosystem mapping. Environ Manag 9(4):271–275

    Article  Google Scholar 

  • Barbosa JM, Asner GP, Hughes RF, Johnson MT (2017) Landscape-scale GPP and carbon density inform patterns and impacts of an invasive tree across wet forests of Hawaii. Ecol Appl 27(2):403–415

    Article  PubMed  Google Scholar 

  • Barney JN, Tekiela DR, Dollete ES, Tomasek BJ (2013) What is the “real” impact of invasive plant species? Front Ecol Environ 11(6):322–329

    Article  Google Scholar 

  • Barona PC, Mena C (2014) Using remote sensing and a cellular automata-Markov chains-GEOMOD model for the quantification of the future spread of an invasive plant: a case study of Psidium guajava in Isabela Island, Galapagos. Int J Geoinf 10(3):23–30

    Google Scholar 

  • Barone G, Domina G, Di Gristina E (2021) Comparison of different methods to assess the distribution of alien plants along the road network and use of google street view panoramas interpretation in Sicily (Italy) as a case study. Biodivers Data J 9:e66013

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartz R, Kowarik I (2019) Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43:69–99

    Article  Google Scholar 

  • Bazzichetto M, Malavasi M, Barták V, Acosta ATR, Moudrý V, Carranza ML (2018) Modeling plant invasion on Mediterranean coastal landscapes: an integrative approach using remotely sensed data. Landsc Urban Plan 171:98–106

    Article  Google Scholar 

  • Bedford A, Sankey TT, Sankey JB, Durning L, Ralston BE (2018) Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA. Ecol Ind 89:365–375

    Article  Google Scholar 

  • Bell A, Klein D, Rieser J, Kraus T, Thiel M, Dech S (2023) Scientific evidence from space—a review of spaceborne remote sensing applications at the science-policy interface. Remote Sens 15:940

    Article  Google Scholar 

  • Bolch EA, Santos MJ, Ade C, Khanna S, Basinger NT, Reader MO, Hestir EL (2020) Remote detection of invasive alien species. In: Cavender-Bares J, Gamon JA, Townsend PA (eds) Remote sensing of plant biodiversity. Springer, Cham, pp 267–307

    Chapter  Google Scholar 

  • Boshuizen C, Mason J, Klupar P, Spanhake S (2014) Results from the planet labs flock constellation. In: Proceedings 28th annual AIAA/USU conference of small satellites, technical session, pp. 1–8

  • Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15(7):1417–1429

    Article  Google Scholar 

  • Brodrick PG, Davies AB, Asner GP (2019) Uncovering ecological patterns with convolutional neural networks. Trends Ecol Evol 34(8):734–745

    Article  PubMed  Google Scholar 

  • Bruce B, Ryerson B (1993) Technology transfer and remote sensing: models for success and models for failure. Int Arch Photogramm Remote Sens 29:240–240

    Google Scholar 

  • Carter GA, Lucas KL, Blossom GA et al (2009) Remote sensing and mapping of tamarisk along the Colorado river, USA: a comparative use of summer-acquired Hyperion, thematic mapper and Quickbird data. Remote Sens 1:318–329

    Article  Google Scholar 

  • Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. J Veg Sci 25(2):319–322

    Article  Google Scholar 

  • Chase JM, McGill BJ, McGlinn DJ, May F, Blowes SA, Xiao X, Gotelli NJ (2018) Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol Lett 21(11):1737–1751

    Article  PubMed  Google Scholar 

  • Chen M, Ke Y, Bai J, Li P, Lyu M, Gong Z, Zhou D (2020) Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: a case study in the Yellow River Delta, China. Int J Appl Earth Obs Geoinf 92:102180

    Google Scholar 

  • Civille JC, Sayce K, Smith SD, Strong DR (2005) Reconstructing a century of Spartina alterniflora invasion with historical records and contemporary remote sensing. Ecoscience 12(3):330–338

    Article  Google Scholar 

  • Cunliffe AM, Brazier RE, Anderson K (2016) Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens Environ 183:129–143

    Article  Google Scholar 

  • Dahal D, Pastick NJ, Boyte SP, Parajuli S, Oimoen MJ, Megard LJ (2022) Multi-Species inference of exotic annual and native perennial grasses in rangelands of the Western United States using harmonized Landsat and Sentinel-2 data. Remote Sens 14(4):807

    Article  Google Scholar 

  • Dai J, Roberts DA, Stow DA, An L, Hall SJ, Yabiku ST, Kyriakidis PC (2020) Mapping understory invasive plant species with field and remotely sensed data in Chitwan. Nepal Remote Sens Environ 250:112037.

    Article  Google Scholar 

  • Damgaard C (2019) A critique of the space-for-time substitution practice in community ecology. Trends Ecol Evol 34(5):416–421

    Article  PubMed  Google Scholar 

  • Dash JP, Watt MS, Paul TS, Morgenroth J, Pearse GD (2019) Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR Data. Remote Sens 11(15):1812

    Article  Google Scholar 

  • de Sá NC, Castro P, Carvalho S, Marchante E, López-Núñez FA, Marchante H (2018) Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front Plant Sci 9:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Deus E, Silva JS, Catry FX, Rocha M, Moreira F (2016) Google Street View as an alternative method to car surveys in large-scale vegetation assessments. Environ Monit Assess 188(10):1–14

    Article  Google Scholar 

  • Dhu T, Giuliani G, Juárez J, Kavvada A, Killough B, Merodio P, Minchin S, Ramage S (2019) National open data cubes and their contribution to country-level development policies and practices. Data 4(4):144

    Article  Google Scholar 

  • Di Cecco GJ, Barve V, Belitz MW, Stucky BJ, Guralnick RP, Hurlbert AH (2021) Observing the observers: How participants contribute data to iNaturalist and implications for biodiversity science. Bioscience 71(11):1179–1188

    Article  Google Scholar 

  • Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature 592(7855):571–576

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Wang C, Yan J, He Q, Zeng J, Wei Z (2020) Combining Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on google earth engine: a case study in Zhangjiang Estuary. J Appl Remote Sens 14(4):044504

    Google Scholar 

  • Doody TM, Lewis M, Benyon RG, Byrne G (2014) A method to map riparian exotic vegetation (Salix spp.) area to inform water resource management. Hydrol Process 28(11):3809–3823

    Article  Google Scholar 

  • Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T (2013) The impact of an invasive plant changes over time. Ecol Lett 16:1277–1284

    Article  PubMed  Google Scholar 

  • Dudley KL, Dennison PE, Roth KL, Roberts DA, Coates AR (2015) A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens Environ 167:121–134

    Article  Google Scholar 

  • Dwyer JL, Roy DP, Sauer B, Jenkerson CB, Zhang HK, Lymburner L (2018) Analysis ready data: enabling analysis of the Landsat archive. Remote Sens 10(9):1363

    Article  Google Scholar 

  • Dzikiti S, Gush MB, Le Maitre DC, Maherry A, Jovanovic NZ, Ramoelo A, Cho MA (2016) Quantifying potential water savings from clearing invasive alien Eucalyptus camaldulensis using in situ and high resolution remote sensing data in the Berg River Catchment, Western Cape, South Africa. For Ecol Manage 361:69–80

    Article  Google Scholar 

  • Elkind K, Sankey TT, Munson SM, Aslan CE (2019) Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine. Remote Sens Ecol Conserv 5(4):318–331

    Article  Google Scholar 

  • Evangelista PH, Stohlgren TJ, Morisette JT et al (2009) Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data. Remote Sens 1:519–533

    Article  Google Scholar 

  • Ewald M, Skowronek S, Aerts R, Dolos K, Lenoir J, Nicolas M, Warrie J, Hattab T, Feilhauer H, Honnay O, Garzón-López CX, Decocq G, Van De Kerchove R, Somers B, Rocchini D, Schmidtlein S (2018) Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biol Invasions 20:2257–2271

    Article  Google Scholar 

  • Ewald M, Skowronek S, Aerts R, Lenoir J, Feilhauer H, Van De Kerchove R, Honnay O, Somers B, Garzón-López CX, Rocchini D, Schmidtlein S (2020) Assessing the impact of an invasive bryophyte on plant species richness using high resolution imaging spectroscopy. Ecol Ind 110:105882

    Article  Google Scholar 

  • Frantz D (2019) FORCE—Landsat+ Sentinel-2 analysis ready data and beyond. Remote Sens 11(9):1124

    Article  Google Scholar 

  • Funk JL, Parker IM, Matzek V, Flory SL, Aschehoug ET, D’Antonio CM, Valliere J (2020) Keys to enhancing the value of invasion ecology research for management. Biol Invasions 22(8):2431–2445

    Article  Google Scholar 

  • Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J, Richardson DM (2014) Invasive plants as drivers of regime shifts: Identifying high priority invaders that alter feedback relationships. Divers Distrib 20:733–744

    Article  Google Scholar 

  • Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sens Environ 122:134–145

    Article  Google Scholar 

  • Gholizadeh H, Friedman MS, McMillan NA, Hammond WM, Hassani K, Sams AV, Adams HD (2022) Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits. Remote Sens Environ 271:112887

    Article  Google Scholar 

  • Gill NS, Mahood AL, Meier CL, Muthukrishnan R, Nagy RC, Stricker E, Morisette JT (2021) Six central questions about biological invasions to which NEON data science is poised to contribute. Ecosphere 12(9):e03728

    Article  Google Scholar 

  • Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501

    Article  PubMed  Google Scholar 

  • Giuliani G, Masó J, Mazzetti P, Nativi S, Zabala A (2019) Paving the way to increased interoperability of earth observations data cubes. Data 4(3):113

    Article  Google Scholar 

  • Glenn NF, Mundt JT, Weber KT, Prather TS, Lass LW, Pettingill J (2005) Hyperspectral data processing for repeat detection of small infestations of leafy spurge. Remote Sens Environ 95:399–412

    Article  Google Scholar 

  • Große-Stoltenberg A, Hellmann C, Werner C, Oldeland J, Thiele J (2016) Evaluation of continuous VNIR-SWIR spectra versus narrowband hyperspectral indices to discriminate the invasive Acacia longifolia within a Mediterranean dune ecosystem. Remote Sens 8:334

    Article  Google Scholar 

  • Große-Stoltenberg A, Hellmann C, Thiele J, Werner C, Oldeland J (2018) Early detection of GPP-related regime shifts after plant invasion by integrating imaging spectroscopy with airborne LiDAR. Remote Sens Environ 209:780–792

    Article  Google Scholar 

  • Große-Stoltenberg A, Lizarazo I, Brundu G, Paiva Gonçalves V, Prado Osco L, Masemola C, Müllerová J, Werner C, Kotze I, Oldeland J (2023) Remote sensing of invasive wattles: state of the art and future perspectives. In: Richardson DM, Le Roux JJ, Marchante EM (eds) Wattles–Australian acacia species around the world. CABI, Wallingford, pp. 474–496

  • Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning versus OBIA for scattered shrub detection with Google earth imagery: Ziziphus lotus as case study. Remote Sens 9(12):1220

    Article  Google Scholar 

  • Haccou P, Serra MC (2021) Establishment versus population growth in spatio-temporally varying environments. Proc R Soc B 288(1942):20202009

    Article  PubMed Central  Google Scholar 

  • Hardisty AR, Belbin L, Hobern D, McGeoch MA, Pirzl R, Williams KJ, Kissling WD (2019) Research infrastructure challenges in preparing essential biodiversity variables data products for alien invasive species. Environ Res Lett 14:025005

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8(1):91–101

    Article  Google Scholar 

  • He KS, Rocchini D, Neteler M, Nagendra H (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib 17(3):381–392

    Article  Google Scholar 

  • Hellmann C, Rascher KG, Oldeland J, Werner C (2016) Isoscapes resolve species-specific spatial patterns in plant–plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol 36:1460–1470

    Article  CAS  PubMed  Google Scholar 

  • Hellmann C, Große-Stoltenberg A, Thiele J, Oldeland J, Werner C (2017) Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Helsen K, Van Cleemput E, Bassi L, Somers B, Honnay O (2020) Optical traits perform equally well as directly-measured functional traits in explaining the impact of an invasive plant on litter decomposition. J Ecol 108(5):2000–2011

    Article  Google Scholar 

  • Heslop LA, Fadaie K (2002) The 3 Bs of impact assessment of technology transfer programmes: rationale, technique and a case example from the Canada centre for remote sensing. Int J Technol Transf Commer 1(3):217–248

    Google Scholar 

  • Hobi ML, Ginzler C (2012) Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Sensors 12(5):6347–6368

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn KJ, St. Clair SB (2017) Wildfire and exotic grass invasion alter plant productivity in response to climate variability in the Mojave Desert. Landsc Ecol 32:635–646

    Article  Google Scholar 

  • Houborg R, Fisher JB, Skidmore AK (2015) Advances in remote sensing of vegetation function and traits. Int J Appl Earth Obs Geoinf 43:1–6

    Google Scholar 

  • Howard L, van Rees CB, Dahlquist Z, Luikart G, Hand BK (2022) A review of invasive species reporting apps for citizen science and opportunities for innovation. NeoBiota 71:165–188

    Article  Google Scholar 

  • Huang CY, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9(6):4869–4889

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, Geiger E (2008) Climate anomalies provide opportunities for large-scale mapping of non-native plant abundance in desert grasslands. Divers Distrib 14:875–884

    Article  Google Scholar 

  • Huang HM, Zhang LQ, Guan YJ, Wang DH (2008) A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China. Estuar Coast Shelf Sci 77(1):47–55

    Article  Google Scholar 

  • Hughes RF, Asner GP, Mascaro J, Uowolo A, Baldwin J (2014) Carbon storage landscapes of lowland Hawaii: the role of native and invasive species through space and time. Ecol Appl 24(4):716–731

    Article  PubMed  Google Scholar 

  • Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43(5):835–847

    Article  Google Scholar 

  • Jandová K, Klinerová T, Müllerová J, Pyšek P, Pergl J, Cajthaml T, Dostál P (2014) Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biol Biochem 68:270–278

    Article  Google Scholar 

  • Jarić I, Heger T, Monzon FC, Jeschke JM, Kowarik I, McConkey KR, Essl F (2019) Crypticity in biological invasions. Trends Ecol Evolut 34:291–302

    Article  Google Scholar 

  • Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN, Keil P, Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak E (2019) Essential biodiversity variables for mapping and monitoring species populations. Nat Ecol Evolut 3:539–551

    Article  Google Scholar 

  • Johnson BA, Mader AD, Dasgupta R, Kumar P (2020) Citizen science and invasive alien species: an analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Global Ecol Conserv 21:e00812

    Article  Google Scholar 

  • Kattenborn T, Lopatin J, Förster M, Braun AC, Fassnacht FE (2019a) UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens Environ 227:61–73

    Article  Google Scholar 

  • Kattenborn T, Eichel J, Fassnacht FE (2019b) Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci Rep 9:1–9

    Article  Google Scholar 

  • Kattenborn T, Eichel J, Wiser S, Burrows L, Fassnacht FE, Schmidtlein S (2020) Convolutional Neural Networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery. Remote Sens Ecol Conserv 6(4):472–486

    Article  Google Scholar 

  • Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24–49

    Article  Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18(6):299–305

    Article  Google Scholar 

  • Knight KS, Reich PB (2005) Opposite relationships between invasibility and native species richness at patch versus landscape scales. Oikos 109(1):81–88

    Article  Google Scholar 

  • Kopacz JR, Herschitz R, Roney J (2020) Small satellites an overview and assessment. Acta Astronaut 170:93–105

    Article  Google Scholar 

  • Kotowska D, Pärt T, Żmihorski M (2021) Evaluating Google street view for tracking invasive alien plants along roads. Ecol Ind 121:107020

    Article  Google Scholar 

  • Ku NW, Popescu SC (2019) A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data. Biomass Bioenerg 122:270–279

    Article  Google Scholar 

  • Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200(3):615–633

    Article  PubMed  Google Scholar 

  • Kwok R (2018) Ecology’s remote-sensing revolution. Nature 556(7699):137–138

    Article  CAS  PubMed  Google Scholar 

  • Larson KB, Tuor AR (2021) Deep learning classification of cheatgrass invasion in the Western United States using biophysical and remote sensing data. Remote Sens 13(7):1246

    Article  Google Scholar 

  • Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill J (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53(2):242–251

    Article  CAS  Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, McGeoch MA (2017) A vision for global monitoring of biological invasions. Biol Conserv 213:295–308

    Article  Google Scholar 

  • Latombe G, Richardson DM, McGeoch MA, Altwegg R, Catford JA, Chase JM, Hui C (2021) Mechanistic reconciliation of community and invasion ecology. Ecosphere 12(2):e03359

    Article  PubMed  PubMed Central  Google Scholar 

  • Latzka AW, Hansen GJ, Kornis M, Vander Zanden MJ (2016) Spatial heterogeneity in invasive species impacts at the landscape scale. Ecosphere 7(3):e01311

    Article  Google Scholar 

  • Le Maitre DC, Blignaut JN, Clulow A, Dzikiti S, Everson CS, Görgens AH, Gush MB (2020) Impacts of plant invasions on terrestrial water flows in South Africa. Biological invasions in South Africa. Springer International Publishing, Cham, pp 431–457

    Chapter  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 52(1):19–30

    Article  Google Scholar 

  • Lishawa SC, Carson BD, Brandt JS, Tallant JM, Reo NJ, Albert DA, Monks AM, Lautenbach JM, Clark E (2017) Mechanical harvesting effectively controls young Typha spp. invasion and unmanned aerial vehicle data enhances post-treatment monitoring. Front Plant Sci 8:619

    Article  PubMed  Google Scholar 

  • Liu T, Abd-Elrahman A (2018) Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification. ISPRS J Photogramm Remote Sens 139:154–170

    Article  Google Scholar 

  • Liu X, Liu H, Datta P, Frey J, Koch B (2020) Mapping an invasive plant Spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in Middle Coast of Jiangsu. China Remote Sens 12(24):4010

    Article  Google Scholar 

  • Lopatin J, Dolos K, Kattenborn T, Fassnacht FE (2019) How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote Sens Ecol Conserv 5(4):302–317

    Article  Google Scholar 

  • Lucas R, Mueller N, Siggins A, Owers C, Clewley D, Bunting P, Kooymans C, Tissott B, Lewis B, Lymburner L, Metternicht G (2019) Land cover mapping using digital earth Australia. Data 4(4):143

    Article  Google Scholar 

  • Martin F-M, Müllerová J, Borgniet L, Dommanget F, Breton V, Evette A (2018) Using single- and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Remote Sens 10:1662

    Article  Google Scholar 

  • Martinez B, Reaser JK, Dehgan A, Zamft B, Baisch D, McCormick C, Selbe S (2020) Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol Invasions 22(1):75–100

    Article  Google Scholar 

  • Masemola C, Cho MA, Ramoelo A (2019) Assessing the effect of seasonality on leaf and canopy spectra for the discrimination of an alien tree species, Acacia mearnsii, from co-occurring native species using parametric and nonparametric classifiers. IEEE Trans Geosci Remote Sens 57:5853–5867

    Article  Google Scholar 

  • McInerney PJ, Doody TM, Davey CD (2021) Invasive species in the Anthropocene: Help or hindrance? J Environ Manage 293:112871

    Article  PubMed  Google Scholar 

  • Meng R, Dennison PE, Jamison LR, van Riper C, Nager P, Hultine KR, Dudley T (2012) Detection of tamarisk defoliation by the northern tamarisk beetle based on multitemporal Landsat 5 thematic mapper imagery. Gisci Remote Sens 49(4):510–537

    Article  Google Scholar 

  • Mesaglio T, Callaghan CT (2021) An overview of the history, current contributions and future outlook of iNaturalist in Australia. Wildl Res 48(4):289–303

    Article  Google Scholar 

  • Migliavacca M, Musavi T, Mahecha MD et al (2021) The three major axes of terrestrial ecosystem function. Nature 598:468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirik MSAA, Ansley RJ (2012) Comparison of ground-measured and image-classified mesquite (Prosopis glandulosa) canopy cover. Rangel Ecol Manage 65(1):85–95

    Article  Google Scholar 

  • Morisette JT, Jarnevich CS, Ullah A, Cai W, Pedelty JA, Gentle JE, Schnase JL (2006) A tamarisk habitat suitability map for the continental United States. Front Ecol Environ 4(1):11–17

    Article  Google Scholar 

  • Mouta N, Silva R, Pais S, Alonso JM, Gonçalves JF, Honrado J, Vicente JR (2021) ‘The best of two worlds’—combining classifier fusion and ecological models to map and explain landscape invasion by an alien shrub. Remote Sens 13(16):3287

    Article  Google Scholar 

  • Mudereri BT, Dube T, Adel-Rahman EM, Niassy S, Kimathi E, Khan Z, Landmann T (2019) A comparative analysis of PlanetScope and Sentinel-2 space-borne sensors in mapping Striga weed using Guided Regularised Random Forest classification ensemble. Int Arch Photogramm, Remote Sens Spat Inf Sci 42(2/W13)

  • Müllerová J (2019) UAS for nature conservation-monitoring invasive species. In: Sharma BJ (ed) Applications of small unmanned aircraft systems. Best practices and case studies. CRC Press, Boca Raton, pp 157–178

    Chapter  Google Scholar 

  • Müllerová J, Pyšek P, Jarošík V, Pergl JAN (2005) Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum. J Appl Ecol 42(6):1042–1053

    Article  Google Scholar 

  • Müllerová J, Pergl J, Pyšek P (2013) Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). Int J Appl Earth Obs Geoinf 25:55–65

    Google Scholar 

  • Müllerová J, Bartaloš T, Brůna J, Dvořák P, Vítková M (2017a) Unmanned aircraft in nature conservation—an example from plant invasions. Int J Remote Sens 38(8–10):2177–2198

    Article  Google Scholar 

  • Müllerová J, Gago X, Bučas M, Company J, Estrany J, Fortesa J, Manfreda S, Michez A, Mokroš M, Paulus G, Tiškus E, Tsiafouli M, Kent R (2021) Characterizing vegetation complexity with unmanned aerial systems (UAS)–a framework and synthesis. Ecol Ind 131:108156

    Article  Google Scholar 

  • Müllerová J, Brůna J, Bartaloš T, Dvořák P, Vítková M, Pyšek P (2017b) Timing is important: unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front Plant Scie 8:887

    Article  Google Scholar 

  • Myczko Ł, Dylewski Ł, Chrzanowski A, Sparks TH (2017) Acorns of invasive Northern Red Oak (Quercus rubra) in Europe are larval hosts for moths and beetles. Biol Invasions 19(8):2419–2425

    Article  Google Scholar 

  • Nagler PL, Glenn EP, Hinojosa-Huerta O (2009) Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta. Mexico Remote Sens Environ 113(7):1473–1485

    Article  Google Scholar 

  • Nagler PL, Brown T, Hultine KR, Bean DW, Dennison PE, Murray RS, Glenn EP (2012) Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western US rivers as determined by multi-scale remote sensing methods. Remote Sens Environ 118:227–240

    Article  Google Scholar 

  • Nagler PL, Barreto-Muñoz A, Chavoshi Borujeni S, Jarchow CJ, Gómez-Sapiens MM, Nouri H, Didan K (2020) Ecohydrological responses to surface flow across borders: Two decades of changes in vegetation greenness and water use in the riparian corridor of the Colorado River delta. Hydrol Process 34(25):4851–4883

    Article  Google Scholar 

  • Nehrbass N, Winkler E, Müllerová J, Pergl J, Pyšek P, Perglová I (2007) A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biol Invasions 9(4):383–395

    Article  Google Scholar 

  • Niphadkar M, Nagendra H (2016) Remote sensing of invasive plants: incorporating functional traits into the picture. Int J Remote Sens 37(13):3074–3085

    Article  Google Scholar 

  • Nosavan J, Moreau A, Hosford S (2020) SPOT world heritage catalogue: 30 years of SPOT 1-to-5 observation. In EGU general assembly conference abstracts, p. 8275.

  • Odum EP, Barrett GW (1971) Fundamentals of ecology, Saunders, Philadelphia, vol 3, p 5

  • Padalia H, Kudrat M, Sharma KP (2013) Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit. using spectral unmixing technique. Int J Remote Sens 34(1):325–340

    Article  Google Scholar 

  • Pardo-Primoy D, Fagúndez J (2019) Assessment of the distribution and recent spread of the invasive grass Cortaderia selloana in Industrial Sites in Galicia. NW Spain Flora 259:151465

    Google Scholar 

  • Pastick NJ, Dahal D, Wylie BK, Parajuli S, Boyte SP, Wu Z (2020) Characterizing land surface phenology and exotic annual grasses in dryland ecosystems using Landsat and Sentinel-2 data in harmony. Remote Sens 12(4):725

    Article  Google Scholar 

  • Pergl P, Müllerová J, Perglová I, Herben T, Pyšek P (2011) The role of long-distance seed dispersal in the local population dynamics of an invasive plant species. Divers Distrib 17:725–738

    Article  Google Scholar 

  • Peters DP, Bestelmeyer BT, Turner MG (2007) Cross–scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10(5):790–796

    Article  Google Scholar 

  • Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51:839–848. https://doi.org/10.1111/1365-2664.12261

    Article  Google Scholar 

  • Pickett ST (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Picoli MC, Simoes R, Chaves M, Santos LA, Sanchez A, Soares A, Sanches D, Ferreira KR, Queiroz GR (2020) CBERS data cube: a powerful technology for mapping and monitoring Brazilian biomes. ISPRS Ann Photogramm, Remote Sens Spat Inf Sci 3:533–539

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, O’Farrell PJ, Richardson DM (2019) A fine-scale assessment of the ecosystem service-disservice dichotomy in the context of urban ecosystems affected by alien plant invasions. For Ecosyst 6:46. https://doi.org/10.1186/s40663-019-0200-4

    Article  Google Scholar 

  • Price B, Waser LT, Wang Z, Marty M, Ginzler C, Zellweger F (2020) Predicting biomass dynamics at the national extent from digital aerial photogrammetry. Int J Appl Earth Obs Geoinf 90:102116

    Google Scholar 

  • Pu R, Gong P, Tian Y, Miao X, Carruthers RI, Anderson GL (2008) Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA. Int J Remote Sens 29(14):3987–4011.

    Article  Google Scholar 

  • Pyšek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12(3):302–315

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Müllerová J, Pergl J, Wild J (2008) Comparing the rate of invasion by Heracleum mantegazzianum at continental, regional, and local scales. Divers Distrib 14:355–363

    Article  Google Scholar 

  • Qian W, Huang Y, Liu Q, Fan W, Sun Z, Dong H, Qiao X (2020) UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Comput Electron Agric 174:105519

    Article  Google Scholar 

  • Rajah P, Odindi J, Mutanga O (2018) Feature level image fusion of optical imagery and synthetic aperture radar (SAR) for invasive alien plant species detection and mapping. Remote Sens Appl Soc Environ 10:198–208

    Google Scholar 

  • Ramsey E, Rangoonwala A, Nelson G, Ehrlich R, Martella K (2005) Generation and validation of characteristic spectra from EO1 Hyperion image data for detecting the occurrence of the invasive species, Chinese tallow. Int J Remote Sens 26:1611–1636

    Article  Google Scholar 

  • Rascher KG, Große-Stoltenberg A, Máguas C, Meira-Neto JAA, Werner C (2011a) Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol Invasions 13:1099–1113

    Article  Google Scholar 

  • Rascher KG, Große-Stoltenberg A, Máguas C, Werner C (2011b) Understory invasion by Acacia longifolia alters the water balance and carbon gain of a Mediterranean pine forest. Ecosystems 14:904

    Article  Google Scholar 

  • Rebelo AJ, Gokool S, Holden PB, New MG (2021) Can Sentinel-2 be used to detect invasive alien trees and shrubs in Savanna and Grassland biomes? Remote Sens Appl Soc Environ 23:100600

    Google Scholar 

  • Ren G, Zhao Y, Wang J, Wu P, Ma Y (2021) Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery. Estuar Coast Shelf Sci 249:107111

    Article  Google Scholar 

  • Resasco J, Hale AN, Henry MC, Gorchov DL (2007) Detecting an invasive shrub in a deciduous forest understory using late-fall Landsat sensor imagery. Int J Remote Sens 28(16):3739–3745

    Article  Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83(3):263–282

    Article  Google Scholar 

  • Richardson DM (2011) Invasion science: the roads travelled and the roads ahead. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 397–401

    Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Rocchini D, Petras V, Petrasova A, Horning N, Furtkevicova L, Neteler M, Leutner B, Wegmann M (2017) Open data and open source for remote sensing training in ecology. Eco Inform 40:57–61

    Article  Google Scholar 

  • Rocchini D, Andreo V, Förster M, Garzon-Lopez CX, Gutierrez AP, Gillespie TW, Neteler M (2015) Potential of remote sensing to predict species invasions: a modelling perspective. Progress Phys Geograp 39(3):283–309

    Article  Google Scholar 

  • Rodgers L, Pernas T, Redwine J, Shamblin B, Bruscia S (2018) Multiscale invasive plant monitoring: experiences from the greater Everglades restoration area. Weed Technol 32(1):11–19

    Article  Google Scholar 

  • Rosso PH, Ustin SL, Hastings A (2006) Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes. Remote Sens Environ 100(3):295–306

    Article  Google Scholar 

  • Royimani L, Mutanga O, Odindi J, Dube T, Matongera TN (2019) Advancements in satellite remote sensing for mapping and monitoring of alien invasive plant species (AIPs). Phys Chem Earth Parts a/b/c 112:237–245

    Article  Google Scholar 

  • Ryerson R, Haack B (2016) The role of remote sensing in assisted development: experience drawn from work in over 40 countries. Can J Remote Sens 42(4):324–331

    Article  Google Scholar 

  • Sandino J, Gonzalez F, Mengersen K, Gaston KJ (2018) UAVs and machine learning revolutionising invasive grass and vegetation surveys in remote arid lands. Sensors 18(2):605

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankey TT, Sankey JB, Horne R, Bedford A (2016) Remote sensing of tamarisk biomass, insect herbivory, and defoliation: novel methods in the Grand Canyon Region. Ariz Photogramm Eng Remote Sens 82(8):645–652

    Article  Google Scholar 

  • Schramm M, Pebesma E, Milenković M, Foresta L, Dries J, Jacob A, Wagner W, Mohr M, Neteler M, Kadunc M, Miksa T, Kempeneers P, Verbesselt J, Gößwein B, Navacchi C, Lippens S, Reiche J (2021) The openEO API–harmonising the use of earth observation Cloud services using virtual data cube functionalities. Remote Sens 13:1125

    Article  Google Scholar 

  • Schulze-Brüninghoff D, Wachendorf M, Astor T (2021) Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus. Remote Sens Ecol Conserv 7(2):198–213

    Article  Google Scholar 

  • Secades C, O'Connor B, Brown C, Walpole M (2014) Earth observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress towards the Aichi biodiversity targets. Secretariat of the Convention on Biological Diversity, Montréal, Canada. Technical Series No. 72, 183 pages. [https://digitallibrary.un.org/record/780247]

  • Seeley M, Asner GP (2021) Imaging spectroscopy for conservation applications. Remote Sens 13(2):292

    Article  Google Scholar 

  • Shaw DR (2005) Translation of remote sensing data into weed management decisions. Weed Sci 53(2):264–273

    Article  CAS  Google Scholar 

  • Shaw JD, Wilson JRU, Richardson DM (2010) Initiating dialogue between scientists and managers of biological invasions. Biol Invasions 12:4077–4083

    Article  Google Scholar 

  • Shermeyer J, Van Etten A (2019) The effects of super-resolution on object detection performance in satellite imagery. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops (CVPR 2019), Long Beach, CA, USA; pp. 1–10

  • Shiferaw H, Alamirew T, Dzikiti S, Bewket W, Zeleke G, Schaffner U (2021) Water use of Prosopis juliflora and its impacts on catchment water budget and rural livelihoods in Afar Region. Ethiop Sci Rep 11(1):1–14

    Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Shouse M, Liang L, Fei S (2013) Identification of understory invasive exotic plants with remote sensing in urban forests. Int J Appl Earth Obs Geoinf 21:525–534

    Google Scholar 

  • Silván-Cárdenas JL, Wang L (2010) Retrieval of subpixel Tamarix canopy cover from Landsat data along the Forgotten river using linear and nonlinear spectral mixture models. Remote Sens Environ 114:1777–1790

    Article  Google Scholar 

  • Singh KK, Davis AJ, Meentemeyer RK (2015) Detecting understory plant invasion in urban forests using LiDAR. Int J Appl Earth Obs Geoinf 38:267–279

    Google Scholar 

  • Skowronek S, Van De Kerchove R, Rombouts B, Aerts R, Ewald M, Warrie J, Feilhauer H (2018) Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. Int J Appl Earth Obs Geoinf 68:61–72

    Google Scholar 

  • Slingsby JA, Moncrieff GR, Wilson AM (2020) Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J Photogramm Remote Sens 166:15–25

    Article  Google Scholar 

  • Soltani S, Feilhauer H, Duker R, Kattenborn T (2022) Transfer learning from citizen science photographs enables plant species identification in UAVs imagery. ISPRS Open J Photogramm Remote Sens 5:100016

    Article  Google Scholar 

  • Somers B, Asner GP (2012) Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests. Remote Sens 4(9):2510–2529

    Article  Google Scholar 

  • Somers B, Asner GP (2013) Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens Environ 136:14–27

    Article  Google Scholar 

  • Sumbul G, Charfuelan M, Demir B, Markl V (2019) Bigearthnet: a large-scale benchmark archive for remote sensing image understanding. In: IEEE international geoscience and remote sensing symposium (IGARSS), pp 5901–5904

  • Takaya K, Sasaki Y, Ise T (2022) Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science. Breed Sci 72(1):96–106

    Article  PubMed Central  Google Scholar 

  • Tarantino C, Casella F, Adamo M, Lucas R, Beierkuhnlein C, Blonda P (2019) Ailanthus altissima mapping from multi-temporal very high resolution satellite images. ISPRS J Photogramm Remote Sens 147:90–103

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176(2):256–273

    Article  PubMed  Google Scholar 

  • Thiele J, Kollmann J, Markussen B, Otte A (2010) Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biol Invasions 12(7):2025–2035

    Article  Google Scholar 

  • Tian J, Wang L, Yin D, Li X, Diao C, Gong H, Liu X (2020) Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens Environ 242:111745

    Article  Google Scholar 

  • Tmušić G, Manfreda S, Aasen H, James MR, Gonçalves G, Ben-Dor E, Brook A, Polinova M, Arranz JJ, Mészáros J, Zhuang R, Johansen K, Malbeteau Y, de Lima IP, Davids C, Herban S, McCabe MF (2020) Current practices in UAS-based environmental monitoring. Remote Sens 12:1001

    Article  Google Scholar 

  • Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landsc Ecol 3(3):245–252

    Article  Google Scholar 

  • Van Cleemput E, Van Meerbeek K, Helsen K, Honnay O, Somers B (2020) Remotely sensed plant traits can provide insights into ecosystem impacts of plant invasions: a case study covering two functionally different invaders. Biol Invasions 22(12):3533–3550

    Article  Google Scholar 

  • Vanthof VR, Kelly RE (2017) Mapping Prosopis juliflora invasion within rainwater harvesting structures in India using google earth engine. In: IEEE international geoscience and remote sensing symposium (IGARSS), pp 1115–1118

  • Vaz AS, Alcaraz-Segura D, Campos JC, Vicente JR, Honrado JP (2018) Managing plant invasions through the lens of remote sensing: a review of progress and the way forward. Sci Total Environ 642:1328–1339

    Article  CAS  PubMed  Google Scholar 

  • Vaz AS, Alcaraz-Segura D, Vicente JR, Honrado JP (2019) The many roles of remote sensing in invasion science. Front Ecol Evol 7:370

    Article  Google Scholar 

  • Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google earth as a tool in invasion science. Biol Invasions 16:513–534. https://doi.org/10.1007/s10530-013-0604-y

    Article  Google Scholar 

  • Wallace RD, Bargeron CT, LaForest JH, Carroll RL (2021) Citizen scientists’ role in invasive alien species mapping and management. Invasive Alien Species Obs Issues around World 4:325–338

    Article  Google Scholar 

  • West AM, Evangelista PH, Jarnevich CS, Young NE, Stohlgren TJ, Talbert C, Anderson R (2016) Integrating remote sensing with species distribution models; mapping tamarisk invasions using the software for assisted habitat modeling (SAHM). J vis Exp JoVE 116:e54578

    Google Scholar 

  • Wijesingha J, Astor T, Schulze-Brüninghoff D, Wachendorf M (2020) Mapping invasive Lupinus polyphyllus Lindl. in semi-natural grasslands using object-based image analysis of UAV-borne images. J Photogramm, Remote Sens Geoinf Sci 88:391–406

    Google Scholar 

  • Wilfong BN, Gorchov DL, Henry MC (2009) Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci 57(5):512–520

    Article  CAS  Google Scholar 

  • Van Wilgen BW, Davies SJ, Richardson DM (2014) Invasion science for society: a decade of contributions from the centre for invasion biology. South Afr J Sci 110(7/8), Art. #a0074

  • Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Mons B (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3(1):1–9

  • Xu R, Zhao S, Ke Y (2020) A simple phenology-based vegetation index for mapping invasive Spartina alterniflora using Google earth engine. IEEE J Sel Topics Appl Earth Obs Remote Sens 14:190–201

    Article  Google Scholar 

  • Yang R, Guo W, Zheng J (2019) Soil prediction for coastal wetlands following Spartina alterniflora invasion using Sentinel-1 imagery and structural equation modeling. CATENA 173:465–470

    Article  CAS  Google Scholar 

  • Zenni RD, Essl F, García-Berthou E, McDermott SM (2021) The economic costs of biological invasions around the world. NeoBiota 67:1–9

    Article  Google Scholar 

  • Zhou Z, Yang Y, Chen B (2018) Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data. Aquat Bot 144:38–45

    Article  Google Scholar 

  • Zhu Z, Zhou Y, Seto KC, Stokes EC, Deng C, Pickett ST, Taubenböck H (2019) Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens Environ 228:164–182

    Article  Google Scholar 

  • Zimmermann H, Von Wehrden H, Damascos MA, Bran D, Welk E, Renison D, Hensen I (2011) Habitat invasion risk assessment based on Landsat 5 data, exemplified by the shrub Rosa rubiginosa in southern Argentina. Austral Ecol 36(7):870–880

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fabian Fassnacht for valuable comments on an early draft of the manuscript. JM and AGS were supported under the joint German Academic Exchange Service (DAAD) and Czech Academy of Sciences (CAS) project ”Alien species in a changing world: detection, monitoring and prediction“ (DAAD-21-08, grant no. 57560648). AGS was supported by the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) under the project “Monitoring von naturschutzrelevanten Arten und Renaturierungsmaßnahmen per Fernerkundung (MonA)”. DMR acknowledges support from the DSI-NRF Centre of Excellence in Invasion Biology, Mobility 2020 project no. CZ.02.2.69/0.0/0.0/18_053/0017850 (Ministry of Education, Youth and Sports of the Czech Republic) and long-term research development project RVO 67985939 (Czech Academy of Sciences). TK was supported by the German Research Foundation (DFG) under the project “BigPlantSens” (DFG grant no. 444524904) and "PANOPS” (DFG grant no. 504978936). GB was funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4—Call for tender No. 3138 of 16 December 2021, rectified by Decree n. 3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union—NextGenerationEU, Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, Project title “National Biodiversity Future Center–NBFC”.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the formulation of the concepts and the paper outline and contributed to writing. JM conceived and co-ordinated the writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jana Müllerová.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müllerová, J., Brundu, G., Große-Stoltenberg, A. et al. Pattern to process, research to practice: remote sensing of plant invasions. Biol Invasions 25, 3651–3676 (2023). https://doi.org/10.1007/s10530-023-03150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-023-03150-z

Keywords

Navigation