Skip to main content
Log in

Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical endoplasmic reticulum (ER) protein Ist2 upon cell dehydration and subsequent rehydration. For the first time, we show that not only protein components of the plasma membrane (PM), but also at least one ER membrane protein (Ist2) play an important role in the maintenance of the viability of yeast cells during dehydration and subsequent rehydration. The low viability of the mutant strain ist2∆ upon dehydration-rehydration stress was related to the lack of Ist2 protein in the ER. We revealed that the PM of ist2∆ strain is not able to completely restore its molecular organisation during reactivation from the state of anhydrobiosis. As the result, the permeability of the PM remains high regardless of the type of reactivation (rapid or gradual rehydration). We conclude that ER protein Ist2 plays an important role in ensuring the stability of molecular organisation and functionality of the PM during dehydration-rehydration stress. These results indicate an important role of ER-PM interactions during cells transition into the state of anhydrobiosis and the subsequent restoration of their physiological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated during this study are included in this paper.

References

  • Beker MJ, Rapoport AI (1987) Conservation of yeast by dehydration. Adv Biochem Eng Biotechnol 35:127–171

    Google Scholar 

  • Beker MJ, Blumbergs JE, Ventina EJ, Rapoport AI (1984) Characteristics of celluar membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Appl Microbiol Biotehnol 19:347–352

    Google Scholar 

  • Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A (2021) Komagataella phaffii as emerging model organism in fundamental research. Front Microbiol 11:607028

    Article  PubMed  PubMed Central  Google Scholar 

  • Borovikova D, Herynkova P, Rapoport A, Sychrova H (2014) Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis. FEMS Microbiol Lett 350:28–33

    Article  CAS  PubMed  Google Scholar 

  • Borovikova D, Teparic R, Mrsa V, Rapoport A (2016) Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration. Yeast 33:347–353

    Article  CAS  PubMed  Google Scholar 

  • Calahan D, Dunham M, DeSevo C, Koshland DE (2011) Genetic analysis of desiccation tolerance in Saccharomyces cerevisiae. Genetics 189:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camara AA Jr, Sant’ Ana AS (2021) Advances in yeast preservation: physiological aspects for cell perpetuation. Curr Opin Food Sci 38:62–70

    Article  Google Scholar 

  • Chang CL, Chen YJ, Liou J (2017) ER-plasma membrane junctions: why and how do we study them? BBA Mol Cell Res 1864:1494–1506

    CAS  Google Scholar 

  • Choudhary V, Schneiter R (2020) Lipid droplet biogenesis from specialized ER subdomains. Microbial Cell 7:218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary V, El Atab O, Mizzon G, Prinz WA, Schneiter R (2020) Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. J Cell Biol 219:e201910177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clegg JS (2001) Cryptobiosis–a peculiar state of biological organization. Comp Biochem Physiol Part B 128:613–624

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1989) Membrane phase transitions are responsible for imbibitional damage in dry pollen. PNAS 86:520–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Oliver AE, Tablin F (2002) Is there a single biochemical adaptation to anhydrobiosis. Integr Comp Biol 42:497–503

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Beney L, Ritt JF, Lherminier J, Gervais P (2010) Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim Biophys Acta 1798:975–985

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Rapoport A, Gervais P, Beney L (2014) The survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834

    Article  CAS  PubMed  Google Scholar 

  • Duskova M, Borovikova D, Herynkova P, Rapoport A, Sychrova H (2015) The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 362:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fischer MA, Temmerman K, Ercan E, Nickel W, Seedorf M (2009) Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER. Traffic 10:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Gavare M, Rozenfelde L, Rapoport A (2014) Anhydrobiosis in yeast: FT-IR spectroscopic studies of yeast grown under conditions of severe oxygen limitation. Biotechnol Appl Biochem 61:474–479

    Article  CAS  PubMed  Google Scholar 

  • Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp 70 family proteins. Proc Biochem 43:1138–1141

    Article  CAS  Google Scholar 

  • Hansen KG, Aviram N, Laborenz J, Bibi C, Meyer M, Spang A, Schuldiner M, Herrmann JM (2018) An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Hijazi I, Knupp J, Chang A (2020) Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress in Saccharomyces cerevisiae. J Cell Sci 133:jcs241539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta 1843:2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawazoe N, Kimata Y, Izawa S (2017) Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Front Microbiol 8:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Knupp J, Arvan P, Chang A (2019) Increased mitochondrial respiration promotes survival from endoplasmic reticulum stress. Cell Death Differ 26:487–501

    Article  CAS  PubMed  Google Scholar 

  • Kralt A, Carreta M, Mari M, Reggiori F, Steen A, Poolman B, Veenhoff LM (2014) Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16:135–147

    Article  PubMed  Google Scholar 

  • Ktistakis NT (2020) ER platforms mediating autophagosome generation. BBA Mol Cell Biol Lipids 1865:158433

    Article  CAS  Google Scholar 

  • Kulikova-Borovikova D, Lisi S, Dauss E, Alamae T, Buzzini P, Hallsworth JE, Rapoport A (2018) Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 122:613–620

    Article  CAS  PubMed  Google Scholar 

  • Le QG, Ishiwata-Kimata Y, Kohno K, Kimata Y (2016) Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response. FEMS Yeast Res 16:049

    Article  Google Scholar 

  • Leslie SB, Teter SA, Crowe LM, Crowe JH (1994) Trehalose lowers membrane phase transitions in dry yeast cells. Biochim Biophys Acta 1192:7–13

    Article  CAS  PubMed  Google Scholar 

  • Manford AG, Stefan CJ, Yuan HL, MacGrun JA, Emr SD (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa K-I, Ishiwata-Kimata Y, Kohno K, Kimata Y (2014) Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 78:1389–1391

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H (2020) Autophagic degradation of the endoplasmic reticulum. Proc Jpn Acad Ser B 96:1–9

    Article  CAS  Google Scholar 

  • Nakatsukasa K (2021) Potential physiological relevance of ERAD to the biosynthesis of GPI-anchored proteins in yeast. Int J Mol Sci 22:1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarette C, Petrezsélyová S, Barreto L, Martínez JL, Zahrádka J, Ariño J, Sychrová H, Ramos J (2010) Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10:508–517

    Google Scholar 

  • Nguyen TSL, Kohno K, Kimata Y (2013) Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms. Biosci Biotechnol Biochem 77:1337–1339

    Article  PubMed  Google Scholar 

  • Papoušková K, Andrsova M, Sychrová H (2017) Lack of cortical endoplasmic reticulum protein Ist2 alters sodium accumulation in Saccharomyces cerevisiae cells. FEMS Yeast Res 17:fox011

    Google Scholar 

  • Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82

    Article  CAS  PubMed  Google Scholar 

  • Rapoport A (2017) Anhydrobiosis and dehydration of yeast. In: Sibirny A (ed) Biotechnology of yeast and filamentous fungi. Springer, New York, pp 87–116

    Chapter  Google Scholar 

  • Rapoport A (2019) Anhydrobiosis in non-conventional yeasts. In: Sibirny A (ed) Non-conventional yeasts: from basic research to application. Springer, New York, pp 341–359

    Chapter  Google Scholar 

  • Rapoport AI, Meissel MN (1985) Survival rates of yeast organisms after dehydration as determined by fluorescence microscopy. Mikrobiologiya 54:66–68

    CAS  Google Scholar 

  • Rapoport AI, Khrustaleva GM, Chamanis GI, Beker ME (1995) Yeast anhydrobiosis: permeability of the plasma membrane. Mikrobiologiya 64:275–278

    CAS  Google Scholar 

  • Rapoport AI, Khroustalyova GM, Kuklina EN (1997) Anhydrobiosis in yeast: activation effect. Brazil J Med Biol Res 30:9–13

    Article  CAS  Google Scholar 

  • Rapoport AI, Khroustalyova GM, Crowe LM, Crowe JH (2009) Anhydrobiosis in yeast: stabilization by exogenous lactose. Microbiol 78:624–629

    Article  CAS  Google Scholar 

  • Rapoport A, Rusakova A, Khroustalyova G, Walker G (2014) Thermotolerance in Saccharomyces cerevisiae is linked to resistance to anhydrobiosis. Proc Biochem 49:1889–1892

    Article  CAS  Google Scholar 

  • Rapoport A, Turchetti B, Buzzini P (2016) Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. World J Microbiol Biotechnol 32:1–10

    Article  CAS  Google Scholar 

  • Rapoport A, Golovina EA, Gervais P, Dupont S, Beney L (2019) Anhydrobiosis: inside yeast cells. Biotechnol Adv 37:51–67

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Brenner R, Boothby TC, Zhang Z (2020) Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast Saccharomyces cerevisiae. BMC Microbiol 20:338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenfelde L, Rapoport A (2014) Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation? Antonie van Leeuwenhoek J Microbiol 106:211–217

    Article  CAS  PubMed  Google Scholar 

  • Smethurst DGJ, Cooper KF (2017) ER fatalities—the role of ER-mitochondrial contact sites in yeast life and death decisions. Mech Ageing Dev 161:225–233

    Article  CAS  PubMed  Google Scholar 

  • Tyo KEJ, Liu Z, Petranovic D, Nielsen J (2012) Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol 10:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Leeuwenhoek A (1705) A letter to the royal society concerning animalcules on the roofs of duck-weed. Philos Trans R Soc Lond 24(296):1784–1793

  • van Leeuwenhoek A (1702) On certain animalcules found in the sediment in gutters of the roofs of houses. Letter 144 in The Select works of Antony van Leeuwenhoek, translated by Samuel Hoole, 1798, 1807, 2 vols. London. 2: 207–213

  • Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • West M, Zurek N, Hoenger A, Voeltz GK (2011) A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol 193:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf W, Kilic A, Schrul B, Lorenz H, Schwappach B, Seedorf M (2012) Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome free membrane microcompartment. PLoS ONE 7:1–13

    Article  Google Scholar 

  • Wolf W, Meese K, Seedorf M (2014) Ist2 in the yeast cortical endoplasmic reticulum promotes trafficking of the amino acid transporter Bap2 to the plasma membrane. PLoS ONE 9:1–13

    Article  Google Scholar 

Download references

Acknowledgements

The work of ED and AR was supported by University of Latvia grant ZD2016/AZ03. The work of KP and HS was supported by a MEYS Grant Inter-COST LTC20006. This work contributes to the COST Action CA18113 EuroMicropH.

Funding

The work of ED and AR was supported by University of Latvia grant ZD2016/AZ03. The work of KP and HS was supported by a MEYS grant Inter-COST LTC20006. This work contributes to the COST Action CA18113 EuroMicropH.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The manuscript was written by all authors. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alexander Rapoport.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the autors.

Consent statement

All authors agreed to participate in this paper. All authors agreed for publication of this paper in “Antonie van Leeuwenhoek Journal of Microbiology”, if accepted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauss, E., Papoušková, K., Sychrová, H. et al. Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie van Leeuwenhoek 114, 1069–1077 (2021). https://doi.org/10.1007/s10482-021-01578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01578-8

Keywords

Navigation