Skip to main content
Log in

On the compressible micropolar fluids in a time-dependent domain

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We investigate compressible micropolar fluids on a time-dependent domain with slip boundary conditions. Our contribution in this paper is threefold. Firstly, we establish the local existence of the strong solution. Secondly, the global existence of weak solutions is shown. The third one is the weak-strong uniqueness principle for slip boundary conditions. There are several new ideas developed by us to overcome the difficulties caused by the coupled terms and slip boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Originally, the method was introduced for fixed domain, see [34].

References

  1. Aero, E.L., Bulygin, A.N., Bessonov, N.M.: Asymmetric hydrodynamics. Prikl. Mat. Mekh. 29, 297–308 (1965)

    Google Scholar 

  2. Amirat, Y., Hamdache, K.: Weak solutions to the equations of motion for compressible magnetic fluids. J. Math. Pures Appl. 91, 433–467 (2009)

    Article  MathSciNet  Google Scholar 

  3. Dražić, I.: 3-D flow of a compressible viscous micropolar fluid model with spherical symmetry: a brief survey and recent progress. Rev. Math. Phys. 30, 1830001 (2018)

    Article  MathSciNet  Google Scholar 

  4. Dražić, I.: Three-dimensional flow of a compressible viscous micropolar fluid with cylindrical symmetry: a global existence theorem. Math. Methods Appl. Sci. 40, 4785–4801 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Dintelmann, E., Geissert, M., Hieber, M.: Strong \(L^p\)-solutions to the Navier-Stokes flow past moving obstacles: the case of several obstacles and time dependent velocity. Trans. Am. Math. Soc. 361, 653–669 (2009)

    Article  Google Scholar 

  6. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  7. Feireisl, E.: Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)

    Article  MathSciNet  Google Scholar 

  8. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Vol. 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    Google Scholar 

  9. Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indian Univ. Math. J. 53, 1705–1738 (2004)

    Article  MathSciNet  Google Scholar 

  10. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)

    Article  MathSciNet  Google Scholar 

  11. Feireisl, E., Kreml, O., Nečasová, Š, Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254, 125–140 (2013)

    Article  MathSciNet  Google Scholar 

  12. Feireisl, E., Neustupa, J., Stebel, J.: Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differ. Equ. 250, 596–606 (2011)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indian Univ. Math. J. 60, 611–631 (2011)

    Article  MathSciNet  Google Scholar 

  15. Galdi, G.P., Mácha, V., Nečasová, Š: On the motion of a body with a cavity filled with compressible fluid. Arch. Ration. Mech. Anal. 232, 1649–1683 (2019)

    Article  MathSciNet  Google Scholar 

  16. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365, 1393–1439 (2013)

    Article  Google Scholar 

  17. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13, 137–146 (2011)

    Article  MathSciNet  Google Scholar 

  18. Haak, B.H., Maity, D., Takahashi, T., Tucsnak, M.: Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid. Math. Nachr. 292, 1972–2017 (2019)

    Article  MathSciNet  Google Scholar 

  19. Huang, B.: On the existence of dissipative measure-valued solutions to the compressible micropolar system. J. Math. Fluid Mech. 22, 59 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hieber, M., Murata, M.: The \(L^p\)-approach to the fluid-rigid body interaction problem for compressible fluids. Evol. Equ. Control Theory 4, 69–87 (2015)

    Article  MathSciNet  Google Scholar 

  21. Jiang, S., Zhang, P.: On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys. 215, 559–581 (2001)

    Article  MathSciNet  Google Scholar 

  22. Kreml, O., Mácha, V., Nečasová, Š, Wróblewska-Kamińska, A.: Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domains. J. Math. Pures Appl. (9) 109, 67–92 (2018)

    Article  MathSciNet  Google Scholar 

  23. Kreml, O., Mácha, V., Nečasová, Š., Wróblewska-Kamińska, A.: Flow of heat conducting fluid in a time-dependent domain. Z. Angew. Math. Phys. 69, pp. Paper No. 119, 27 (2018)

  24. Kreml, O., Nečasová, Š., Piasecki, T.: Compressible Navier-Stokes system on a moving domain in the \({L^p}-{L^q}\) framework. In: Bodnár, T., Galdi, G.P., Nečasová, Š (Eds.), Waves in Flows. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham

  25. Kreml, O., Nečasová, Š, Piasecki, T.: Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains. Proc. Roy. Soc. Edinburgh Sect. A 150, 2255–2300 (2020)

    Article  MathSciNet  Google Scholar 

  26. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, (1998). Compressible models, Oxford Science Publications

  27. Łukaszewicz, G.: Micropolar fluids. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA (1999). Theory and applications

  28. Mácha, V., Muha, B., Nečasová, Š., Roy, A., Trifunovič, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange, arXiv:2109.11096

  29. Navier, C.: M\(\acute{e}\)moire sur les lois du mouvement des fluides.. M\(\acute{e}\)m. Acad. Sci. Inst. Fr. 2, 389–440 (1823)

  30. Nečasová, Š., Ramaswamy, M., Roy, A., Schlömerkemper, A.: Motion of a rigid body in a compressible Fluid with Navier-slip boundary condition. arXiv:2103.08762

  31. Saint-Raymond, L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 705–744 (2009)

    Article  MathSciNet  Google Scholar 

  32. Su, J.: Suitable weak solutions to the micropolar fluids model in a bounded domain. J. Math. Anal. Appl. 504(2), 125406 (2021)

    Article  MathSciNet  Google Scholar 

  33. Xiao, Y., Xin, Z., Wu, J.: Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J. Funct. Anal. 257, 3375–3394 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zaja̧czkowski, W.M.: On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition. J. Appl. Anal. 4, 167–204 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of B.-K. Huang is supported by the grant from NSFC under contract 11901148 and “the Fundamental Research Funds for the Central Universities.” Š. Nečasová has been supported by the Czech Science Foundation (GAČR) project GA19-04243 S. The Institute of Mathematics, CAS, is supported by RVO:67985840. The work of L. Zhang is supported by NSFC under contract 12101472 and “the Fundamental Research Funds for the Central Universities (WUT:2021IVA062).” The authors gratefully acknowledge the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 4.2and Lemma 5.2. We observe that the stress tension for the velocity is coupled with micro-rotational velocity; however, the stress tension of angular-rotational velocity is decoupled. Hence, we should first construct the micro-rotational velocity; then, we use it to construct the velocity of fluids. We look for the extension of the boundary data satisfying the following conditions:

For \(\varvec{w}^b\), it should hold that

$$\begin{aligned} \begin{aligned} \varvec{w}^b(t,y)\cdot {\varvec{n}}(y) & = \left( {\tilde{\varvec{w}}}(t,y)-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) \cdot ({\varvec{n}}(y)-{\varvec{n}}(\varvec{X}(t,y)))\\& \quad +\frac{1}{2}[((\nabla _x\varvec{Y}-{\mathbb {I}})\nabla _y)\wedge {\tilde{\varvec{V}}}]\cdot {\varvec{n}}(\varvec{X}(t,y)),\\ \varvec{w}^b(t,y)\cdot \tau ^k(y) & = \left( {\tilde{\varvec{w}}}(t,y)-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) \cdot (\tau ^k(y)-\tau ^k(\varvec{X}(t,y)))\\& \quad +\frac{1}{2}[((\nabla _x\varvec{Y}-{\mathbb {I}})\nabla _y)\wedge {\tilde{\varvec{V}}}]\cdot \tau ^k(y), \end{aligned} \end{aligned}$$
(10.1)

and

$$\begin{aligned} \begin{aligned}&\left[ (c_a+c_d)\nabla _{y}\varvec{w}^b(t,y)+(c_d-c_a)\nabla _{y}^{{\mathsf {T}}}\varvec{w}^b\right] {\varvec{n}}(y)\cdot \tau ^{k}(y)\\&\quad =\left[ (c_a+c_d)\nabla _{y}\tilde{\varvec{w}}(t,y)({\mathbb {I}}-\nabla _{x}\varvec{Y})+(c_d-c_a)({\mathbb {I}}-\nabla ^{{\mathsf {T}}}_{x}\varvec{Y})\nabla _{y}^{{\mathsf {T}}}\tilde{\varvec{w}}\right] {\varvec{n}}(\varvec{X}(t,y))\cdot \tau ^{k}(\varvec{X}(t,y))\\&\qquad +\left[ (c_a+c_d)\nabla _{y}\tilde{\varvec{w}}(t,y)+(c_d-c_a)\nabla _{y}^{{\mathsf {T}}}\tilde{\varvec{w}}\right] (t,y)\left[ ({\varvec{n}}(y)-{\varvec{n}}(\varvec{X}(t,y)))\cdot \tau ^{k}(\varvec{X}(t,y))\right. \\&\qquad \left.\, +\,{\varvec{n}}(y)\cdot (\tau ^{k}(y)-\tau ^{k}(\varvec{X}(t,y)))\right] . \end{aligned} \end{aligned}$$
(10.2)

For \(\varvec{u}^b\), it should hold that

$$\begin{aligned} \begin{aligned} \varvec{u}^{b}(t,y)\cdot {\varvec{n}}(y) & = ({\tilde{\varvec{u}}}-{\tilde{\varvec{V}}})(t,y)\cdot ({\varvec{n}}(y)-{\varvec{n}}(\varvec{X}(t,y)))\\& \quad +(\varvec{V}(t,(\varvec{X}(t,y)))-{\tilde{\varvec{V}}}(t,y))\cdot {\varvec{n}}(\varvec{X}(t,y)),\\ \varvec{u}^{b}(t,y)\cdot \tau ^{k}(y) & = ({\tilde{\varvec{u}}}-{\tilde{\varvec{V}}})(t,y)\cdot (\tau ^{k}(y)-\tau ^{k}(\varvec{X}(t,y)))\\& \quad +(\varvec{V}(t,(\varvec{X}(t,y)))-{\tilde{\varvec{V}}}(t,y))\cdot \tau ^{k}(\varvec{X}(t,y)), \end{aligned} \end{aligned}$$
(10.3)

and

$$\begin{aligned} \begin{aligned}&\left[ (\mu +\xi )\nabla _{y}\varvec{u}^{b}(t,y)+(\mu -\xi )\nabla _{y}^{{\mathsf {T}}}\varvec{u}^{b}-2\xi A(\varvec{w}^{b})\right] {\varvec{n}}(y)\cdot \tau ^{k}(y)\\&\quad =\left[ (\mu +\xi )\nabla _{y}\tilde{\varvec{u}}(t,y)({\mathbb {I}}-\nabla _{x}\varvec{Y})+(\mu -\xi )({\mathbb {I}}-\nabla ^{{\mathsf {T}}}_{x}\varvec{Y})\nabla _{y}^{{\mathsf {T}}}\tilde{\varvec{u}}\right] {\varvec{n}}(\varvec{X}(t,y))\cdot \tau ^{k}(\varvec{X}(t,y))\\&\qquad +\left[ (\mu +\xi )\nabla _{y}\tilde{\varvec{u}}(t,y)+(\mu -\xi )\nabla _{y}^{{\mathsf {T}}}\tilde{\varvec{u}}-2\xi A(\tilde{\varvec{w}})\right] (t,y)\left[ ({\varvec{n}}(y)-{\varvec{n}}(\varvec{X}(t,y)))\cdot \tau ^{k}(\varvec{X}(t,y))\right. \\&\qquad \left.\, +\,{\varvec{n}}(y)\cdot (\tau ^{k}(y)-\tau ^{k}(\varvec{X}(t,y)))\right] . \end{aligned} \end{aligned}$$
(10.4)

Firstly, we flatten the boundary and choose a proper smooth cutoff function which enjoy the regularity of the boundary. The detail can be found in [25]. Therefore, we can choose

$$\begin{aligned} {\varvec{n}}(y_1,y_2,0)=(0,0,1),\quad \tau ^1(y_1,y_2,0)=(1,0,0), \quad \tau ^2(y_1,y_2,0)=(0,1,0). \end{aligned}$$

Then we construct \({\tilde{\varvec{u}}}^b\) and \({\tilde{\varvec{w}}}^b\) satisfying (10.3) and (10.1), respectively. Moreover, in the following step we use it to define \(\varvec{w}^b\). Lastly, with \(\varvec{w}^b\) in hand, we define \(\varvec{u}^b\).

The construction of \({\tilde{\varvec{u}}}^b\) is directly borrowed from Appendix A in [25]. We list the result as follows

$$\begin{aligned} \Vert {\tilde{\varvec{u}}}^b_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}\le E(T)[1+\Vert ({\tilde{\varvec{u}}}-{\tilde{\varvec{V}}})_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}+\Vert {\tilde{\varvec{u}}}-{\tilde{\varvec{V}}}\Vert _{W^{1,\infty }(0,T;L^2(\Omega _0))}]. \end{aligned}$$
(10.5)

Now, we consider \({\tilde{\varvec{w}}}^b\). Precisely, for any \((y_1,y_2,y_3)\in \Omega _0\), we define

$$\begin{aligned} \begin{aligned} \delta {\varvec{n}}(t,y)={\varvec{n}}(t,(y_1,y_2,0))-{\varvec{n}}(\varvec{X}(t,(y_1,y_2,0))). \end{aligned} \end{aligned}$$

Moreover, the normal component of \({\tilde{\varvec{w}}}^{b}\) can be defined as

$$\begin{aligned} {\tilde{\varvec{w}}}^b\cdot {\varvec{n}}=\left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) (t,y)\cdot \delta {\varvec{n}}(t,y)+\frac{1}{2}[((\nabla _x{\tilde{\varvec{Y}}}-{\mathbb {I}})\nabla _y)\wedge {\tilde{\varvec{V}}}]\cdot {\varvec{n}}(\varvec{X}(t,y)). \end{aligned}$$
(10.6)

For the first term of right-hand side in (10.6), we have

$$\begin{aligned} \begin{aligned}&\left[ \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) (t,y)\cdot \delta {\varvec{n}}(t,y)\right] _{tt}\\&\quad =\left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _{tt}\cdot \delta {\varvec{n}}+2\left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _t\cdot (\delta {\varvec{n}})_{t}+\left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) (t,y)\cdot (\delta {\varvec{n}})_{t}. \end{aligned} \end{aligned}$$
(10.7)

Thanks to (1.6), we get

$$\begin{aligned} \delta {\varvec{n}}\thicksim \int _0^T{\tilde{\varvec{V}}},\quad (\delta {\varvec{n}})_t\thicksim {\tilde{\varvec{V}}},\quad (\delta {\varvec{n}})_{tt}\thicksim {\tilde{\varvec{V}}}_{t}. \end{aligned}$$
(10.8)

We only estimate the first term of right-hand side in (10.7); the rest terms can be done in the same way,

$$\begin{aligned} \begin{aligned} \left\| \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _{tt}\delta {\varvec{n}}\right\| _{L^2(0,T;L^2(\Omega _0))} & \le \Vert \delta {\varvec{n}}\Vert _{L^{\infty }(0,T;L^\infty (\Omega _0))}\left\| \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _{tt}\right\| _{L^2(0,T;L^2(\Omega _0))}\\ & \le T\left\| {\tilde{\varvec{V}}}\Vert _{L^{\infty }(0,T;L^(\Omega _0))}\Vert \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _{tt}\right\| _{L^2(0,T;L^2(\Omega _0))}. \end{aligned} \end{aligned}$$

Finally, we get

$$\begin{aligned} \begin{aligned}&\left\| \left[ \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) \cdot \delta {\varvec{n}}(t,y)\right] _{tt}\right\| _{L^2(L^2)}\\&\quad \le C(T+\sqrt{T})\Vert {\tilde{\varvec{V}}}\Vert _{W^{1,\infty }(0,T;L^{\infty }(\Omega _0))}\left[ \left\| \left( {\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right) _{tt}\right\| _{L^2(0,T;L^2(\Omega _0))}\right. \\&\qquad \left.\, +\,\left\Vert \left({\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}}\right)\right\Vert _{W^{1,\infty }(0,T;L^2(\Omega _0))}\right] . \end{aligned} \end{aligned}$$
(10.9)

For the second term of right-hand side in (10.6), we denote \(E\varvec{Y}=\nabla _x\varvec{Y}-{\mathbb {I}}\); then, it holds that

$$\begin{aligned} \begin{aligned}&[((E\varvec{Y}\nabla _y)\wedge {\tilde{\varvec{V}}})\cdot {\varvec{n}}(\varvec{X}(t,y))]_{tt}\\&\quad =((E\varvec{Y}_{tt}\nabla _y)\wedge {\tilde{\varvec{V}}})\cdot {\varvec{n}}+2((E\varvec{Y}_{t}\nabla _y)\wedge {\tilde{\varvec{V}}}_t)\cdot {\varvec{n}}+((E\varvec{Y}_t\nabla _y)\wedge {\tilde{\varvec{V}}})\cdot {\varvec{n}}_t\\&\qquad +((E\varvec{Y}\nabla _y)\wedge {\tilde{\varvec{V}}}_{tt})\cdot {\varvec{n}}+2((E\varvec{Y}\nabla _y)\wedge {\tilde{\varvec{V}}}_t)\cdot {\varvec{n}}_t+((E\varvec{Y}\nabla _y)\wedge {\tilde{\varvec{V}}})\cdot {\varvec{n}}_{tt}. \end{aligned} \end{aligned}$$

It is easy to observe that

$$\begin{aligned} \Vert E\varvec{Y}\Vert _{L^{\infty }(0,T;L^\infty (\Omega _0))}\le E(T), \quad \Vert (E\varvec{Y}_t,E\varvec{Y}_{tt})\Vert _{L^{\infty }(0,T;L^\infty (\Omega _0))}\le C, \end{aligned}$$
(10.10)

where E is continuous, \(E(0)=0\). Hence, we have

$$\begin{aligned} \begin{aligned}&\Vert [((E\varvec{Y}\nabla _y)\wedge {\tilde{\varvec{V}}})\cdot {\varvec{n}}(\varvec{X}(t,y))]_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}\\&\quad \le E(T)(\Vert \nabla _y{\tilde{\varvec{V}}}\Vert _{W^{1,\infty }(0,T;L^2(\Omega _0))}+\Vert \nabla _y{\tilde{\varvec{V}}}_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}). \end{aligned} \end{aligned}$$
(10.11)

Combining (10.9) and (10.11), we obtain

$$\begin{aligned} \begin{aligned}&\Vert ({\tilde{\varvec{w}}}^b\cdot {\varvec{n}})_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}\\&\quad \le E(t)[1+\Vert ({\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}})_{tt}\Vert _{L^2(0,T;L^2(\Omega _0))}+\Vert ({\tilde{\varvec{w}}}-\frac{1}{2}\mathrm {curl}_y{\tilde{\varvec{V}}})\Vert _{W^{1,\infty }(0,T;L^2(\Omega _0))}]. \end{aligned} \end{aligned}$$
(10.12)

The tangential parts have similar bounds.

Now we construct \(\varvec{w}^b\) and rewrite (10.1) in a compact form

$$\begin{aligned} {\tilde{\varvec{w}}}^{b}=E^{1}{\tilde{\varvec{w}}}+E^2, \end{aligned}$$
(10.13)

where \(E^1\) and \(E^2\) are sufficiently regular matrix and vector functions. Meanwhile, we rewrite (10.2) as

$$\begin{aligned} \begin{aligned} (c_a+c_d)w_{1,y_3}^b+(c_d-c_a)w_{3,y_1}^b=\sum _{i,j=1}^{3}B_{ij}^1(t,x){{\tilde{w}}}_{i,y_j},\\ (c_a+c_d)w_{2,y_3}^b+(c_d-c_a)w_{3,y_2}^b=\sum _{i,j=1}^{3}C_{ij}^1(t,x){{\tilde{w}}}_{i,y_j}. \end{aligned} \end{aligned}$$
(10.14)

First, we take \(w_3^b={\tilde{w}}_3^b\). Next we construct \(w_1^b\), since \(w_2^b\) can be constructed in the same way. In particular,

$$\begin{aligned} w_{3,y_1}^b={\tilde{w}}_{3,y_1}^b=\sum _{i=1}^3E_{3i}^1w_{i,y_1}+\sum _{i=1}^3E_{3i,y_1}^1w_{i}+E_{3,y_1}^2. \end{aligned}$$
(10.15)

Substituting the above identity into (10.14), we have

$$\begin{aligned} \begin{aligned} (c_a+c_d)w_{1,y_3}^b & = \sum _{i,j=1}^3B^1_{ij}(t,x)w_{i,y_j}-(c_d-c_a)\sum _{i=1}^3E_{3i}^1w_{i,y_1}\\&\quad -(c_d-c_a)\sum _{i=1}^3E_{3i,y_1}^1w_{i}-(c_d-c_a)E_{3,y_1}^2\\ & = \sum _{i,j=1}^3\bar{B}^1_{ij}(t,x)w_{i,y_j}-(c_d-c_a)\sum _{i=1}^3E_{3i,y_1}^1w_{i}-(c_d-c_a)E_{3,y_1}^2. \end{aligned} \end{aligned}$$
(10.16)

Then we divide \(w_1^b\) into two parts such that \(w_1^b=w_1^{b1}+w_1^{b2}\) where

$$\begin{aligned} \begin{aligned} (c_a+c_d)w_{1}^{b1}(y) & = \left( \sum _{i=1}^3E_{1i}^1w_i+E_{1}^2\right) (y)+2\sum _{i,j}{\tilde{B}}_{ij}^1w_{i}((y_1,y_2,0)+y_3\varvec{e}_{j})\\&\quad -2\sum _{i,j}{\tilde{B}}^1_{ij}w_{i}\left( (y_1,y_2,0)+\frac{y_3}{2}\varvec{e}_{j}\right) , \end{aligned} \end{aligned}$$
(10.17)

here

$$\begin{aligned} \begin{aligned} {\tilde{B}}_{ij}^1 & = \bar{B}_{ij}^1,\quad j\ne 3,\\ {\tilde{B}}_{i3}^1 & = \bar{B}_{i3}^1-E_{1i}^1,\quad i=1,2,3. \end{aligned} \end{aligned}$$
(10.18)

Applying \(\partial _{y_3}\) to (10.17), we get

$$\begin{aligned} \begin{aligned} (c_a+c_d)w_{1,y_3}^{b1}(y)&=\sum _{i=1}^3E_{1i}^1w_{i,y_3}(y)+\sum _{i=1}^3E_{1i,y_3}^1w_{i}(y)+E^2_{1,y_3}+\sum _{i,j}{\tilde{B}}_{ij}^1w_{i,y_j}(y)\\&=\sum _{i,j}\bar{B}_{ij}^1w_{i,y_j}+\sum _{i}E_{1i,y_3}^1w_i+E^2_{1,y_3}. \end{aligned} \end{aligned}$$
(10.19)

So, subtracting (10.19) from (10.16) gives that

$$\begin{aligned} w_{1,y_3}^{b2}=-\frac{1}{c_a+c_d}\left( \sum _{i}E_{1i}^1w_{i,y_3}+(c_d-c_a)\sum _{i}E_{3i,y_1}^1w_{i}+(c_d-c_a)E_{3,y_1}^2+E^2_{1,y_3}\right) :=P_{w}(y). \end{aligned}$$
(10.20)

Hence, we can define \(w_{1}^{b2}\) as follows

$$\begin{aligned} w_{1}^{b2}=\int _0^{y_3}P_{w}(y_1,y_2,s)\text{d}s. \end{aligned}$$
(10.21)

Finally, \(w_{1}^b=w_{1}^{b1}+w_{1}^{b2}\) is constructed as required relations. With \(\varvec{w}^b\) in hand, we can construct \(\varvec{u}^b\) in the same way which depends on \(\varvec{w}^b\). We also rewrite (10.3) in a compact way

$$\begin{aligned} {\tilde{\varvec{u}}}^{b}=E^{3}{\tilde{\varvec{u}}}+E^4, \end{aligned}$$
(10.22)

where \(E^3\) and \(E^4\) are regular matrix and vector functions. And, (10.4) gives that

$$\begin{aligned} \begin{aligned} (\mu +\xi )u_{1,y_3}^b+(\mu -\xi )u_{3,y_1}^b+w_2^b=\sum _{i,j=1}^{3}B_{ij}^2(t,x){{\tilde{u}}}_{i,y_j}+D^1({\tilde{\varvec{w}}}),\\ (\mu +\xi )u_{2,y_3}^b+(\mu -\xi )u_{3,y_2}^b-w_1^b=\sum _{i,j=1}^{3}C_{ij}^2(t,x){{\tilde{u}}}_{i,y_j}+D^2({\tilde{\varvec{w}}}). \end{aligned} \end{aligned}$$
(10.23)

Also, we take \(u_3^b={{\tilde{u}}}_3^b\), then

$$\begin{aligned} \begin{aligned} (\mu +\xi )u_{1,y_3}^b & = \sum _{i,j=1}^{3}B_{ij}^2(t,x){{\tilde{u}}}_{i,y_j}-(\mu -\xi ){{\tilde{u}}}_{3,y_1}^b-w_2^b+D^1({\tilde{\varvec{w}}})\\ & = \sum _{i,j=1}^3B^2_{ij}(t,x){{\tilde{u}}}_{i,y_j}-(\mu -\xi )\left( \sum _{i=1}^3E_{3i}^3{{\tilde{u}}}_{i,y_1}+\sum _{i=1}^3E_{3i,y_1}^3{{\tilde{u}}}_{i}+E_{3,y_1}^4\right) \\& \quad -w_2^b+D^1({\tilde{\varvec{w}}})\\ & = \sum _{i,j=1}^3\bar{B}^2_{ij}(t,x){{\tilde{u}}}_{i,y_j}-(\mu -\xi )\sum _{i=1}^3E_{3i,y_1}^3{{\tilde{u}}}_{i}-(\mu -\xi )E_{3,y_1}^4-w_2^b+D^1({\tilde{\varvec{w}}}). \end{aligned} \end{aligned}$$
(10.24)

We define \(u_1^b=u_{1}^{b1}+u_{1}^{b2}\) where

$$\begin{aligned} \begin{aligned} (\mu +\xi )u_{1}^{b1}(y) & = \left( \sum _{i=1}^3E_{1i}^3{{\tilde{u}}}_i+E_{1}^4\right) (y)+2\sum _{i,j}{\tilde{B}}_{ij}^2{{\tilde{u}}}_{i}((y_1,y_2,0)+y_3\varvec{e}_{j})\\& \quad -2\sum _{i,j}{\tilde{B}}^2_{ij}{{\tilde{u}}}_{i}\left( (y_1,y_2,0)+\frac{y_3}{2}\varvec{e}_{j}\right) , \end{aligned} \end{aligned}$$
(10.25)

with

$$\begin{aligned} \begin{aligned} {\tilde{B}}_{ij}^2 & = \bar{B}_{ij}^2,\quad j\ne 3,\\ {\tilde{B}}_{i3}^2 & = \bar{B}_{i3}^2-E_{1i}^3,\quad i=1,2,3. \end{aligned} \end{aligned}$$
(10.26)

Hence, we have

$$\begin{aligned} \begin{aligned} u_{1,y_3}^{b2} & = -\frac{1}{\mu +\xi }\left( \sum _{i}E_{1i}^3{{\tilde{u}}}_{i,y_3} +E_{1,y_3}^4+(\mu -\xi )\sum _{i}E_{3i,y_1}^3u_{i}\right. \\&\quad \left.\, +\,(\mu -\xi )E^4_{3,y_1} +w_2^b+D^1({\tilde{\varvec{w}}})\right) \\ & := \,P_{u}(y). \end{aligned} \end{aligned}$$
(10.27)

Finally, we can define \(u_{1}^{b2}\) as follows

$$\begin{aligned} u_{1}^{b2}=\int _0^{y_3}P_{u}(y_1,y_2,s)\mathrm {d}s. \end{aligned}$$
(10.28)

We notice that \(u_1^{b}=u_1^{b1}+u_1^{b2}\) satisfies (10.3) and (10.4).

Note that \(B^1_{ij}\), \(B^2_{ij}\), \(C^1_{ij}\) and \(C^2_{ij}\) are made of \(\tau (y)-\tau (\varvec{X}(y))\), \({\varvec{n}}(y)-{\varvec{n}}(\varvec{X}(y))\) and \(\nabla _x\varvec{Y}-{\mathbb {I}}\). Thanks to (10.8) and (10.10), we obtain the estimate for \(w_1^{b1}\) and \(u_1^{b1}\). When estimates come to \(w_1^{b2}\) and \(u_1^{b2}\), we use the fact

$$\begin{aligned} \nabla _y E^{i}\thicksim \int _0^T\nabla _y{\tilde{\varvec{V}}},\quad i=1,2,3,4. \end{aligned}$$

Therefore, repeating all the argument as before, we can derive the bound for \(\Vert \varvec{u}_{tt}^b\Vert _{L^2(0,T;L^2(\Omega _0))}\) and \(\Vert \varvec{w}_{tt}^b\Vert _{L^2(0,T;L^2(\Omega _0))}\). Other components in \({\mathcal {Y}}(T)\) are obtained in a similar way; we omit the details.

Lemma 4.1

[11] (Fundamental lemma) Let \(\rho \in L^\infty (0,T;L^2(B))\), \(\rho \ge 0\), \(\varvec{u}\in L^2(0,T;W_{0}^{1,2}(B;{\mathbb {R}}^3))\) be a weak solution of the continuity equation,

satisfying

$$\begin{aligned} \int _{B}(\rho (\tau ,\cdot )\phi (\tau , \cdot )-\rho _0\phi (0,\cdot ))\mathrm {d}x=\int _0^\tau \int _{B}(\rho \phi _t+\rho \varvec{u}\cdot \nabla _{x}\phi )\mathrm {d}x\mathrm {d}t \end{aligned}$$

for any \(\tau \in [0,T]\) and any test function \(\phi \in C_c^1([0,T]\times {\mathbb {R}}^3)\).

In addition, assume that \((\varvec{u}-\varvec{V})(\tau , \cdot )\cdot \varvec{n}|_{\Gamma _{\tau }}=0\) for \(\text{ a.a. } \tau \in (0, T),\) and that \(\rho _0\in L^2({\mathbb {R}}^3)\), \(\rho _0\ge 0\), \(\rho _0|_{B\backslash \Omega _0}=0\). Then

$$\begin{aligned} \rho (\tau ,\cdot )|_{B\backslash \Omega _{\tau }}=0,\quad \forall \tau \in [0, T]. \end{aligned}$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Nečasová, Š. & Zhang, L. On the compressible micropolar fluids in a time-dependent domain. Annali di Matematica 201, 2733–2795 (2022). https://doi.org/10.1007/s10231-022-01218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01218-6

Keywords

Mathematics Subject Classification

Navigation