Skip to main content
Log in

Homogenization of the two-dimensional evolutionary compressible Navier–Stokes equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the evolutionary compressible Navier–Stokes equations in a two-dimensional perforated domain, and show that in the subcritical case of very tiny holes, the density and velocity converge to a solution of the evolutionary compressible Navier–Stokes equations in the non-perforated domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113(3), 209–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113(3), 261–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bella, P., Oschmann, F.: Homogenization and low Mach number limit of compressible Navier–Stokes equations in critically perforated domains. J. Math. Fluid Mech. 24(3), 1–11 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bella, P., Oschmann, F.: Inverse of divergence and homogenization of compressible Navier–Stokes equations in randomly perforated domains. Arch. Ration. Mech. Anal. 247(2), 14 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad, Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Trudy Sem. S. L. Soboleva, No. 1, vol. 1980, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, pp. 5–40, 149 (1980)

  6. Bravin, M.: Ad hoc test functions for homogenization of compressible viscous fluid with application to the obstacle problem in dimension two. arXiv preprint arXiv:2208.11166 (2022)

  7. Cioranescu, D., Murat, F.: Un terme étrange venu d’ailleurs. I, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III, Res. Notes in Math., vol. 70, Pitman, Boston, Mass.-London, pp. 154–178, 425–426 (1982)

  8. Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35(1), 87–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diening, L., Feireisl, E., Yong, L.: The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system, ESAIM: Control. Optim. Calculus Variat. 23(3), 851–868 (2017)

    Article  MATH  Google Scholar 

  10. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids, vol. 2. Springer, New York (2009)

    Book  MATH  Google Scholar 

  11. Feireisl, E., Yong, L.: Homogenization of stationary Navier–Stokes equations in domains with tiny holes. J. Math. Fluid Mech. 17(2), 381–392 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, second ed., Springer Monographs in Mathematics, Springer, New York, (2011). Steady-state problems

  14. Giunti, A.: Derivation of Darcy’s law in randomly perforated domains. Calc. Var. Partial. Differ. Equ. 60(5), 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giunti, A., Höfer, R.M.: Homogenisation for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(7), 1829–1868 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hillairet, M.: On the homogenization of the Stokes problem in a perforated domain. Arch. Ration. Mech. Anal. 230(3), 1179–1228 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Höfer, R.M.: Homogenization of the Navier–Stokes equations in perforated domains in the inviscid limit, arXiv preprint arXiv:2209.06075 (2022)

  18. Höfer, R.M., Kowalczyk, K., Schwarzacher, S.: Darcy’s law as low Mach and homogenization limit of a compressible fluid in perforated domains. Math. Models Methods Appl. Sci. 31(09), 1787–1819 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khrabustovskyi, A., Plum, M.: Operator estimates for homogenization of the Robin Laplacian in a perforated domain. J. Differ. Equ. 338, 474–517 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York (1998). Compressible models, Oxford Science Publications

  21. Lu, Y.: Homogenization of Stokes equations in perforated domains: a unified approach. J. Math. Fluid Mech. 22(3), Paper No. 44, 13 (2020)

  22. Marchenko, V.A., Khruslov, E.Y.: Homogenization of Partial Differential Equations, vol. 46. Springer Science & Business Media, New York (2008)

    Google Scholar 

  23. Masmoudi, N.: Homogenization of the compressible Navier–Stokes equations in a porous medium, ESAIM: control. Optim. Calculus Variat. 8, 885–906 (2002)

    Article  MATH  Google Scholar 

  24. Nečasová, Š, Pan, J.: Homogenization problems for the compressible Navier–Stokes system in 2D perforated domains. Math. Methods Appl. Sci. 45(12), 7859–7873 (2022)

    Article  MathSciNet  Google Scholar 

  25. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. OUP Oxford, New York (2004)

    MATH  Google Scholar 

  26. Oschmann, F., Pokorný, M.: Homogenization of the unsteady compressible Navier-Stokes equations for adiabatic exponent \(\gamma > 3\), arXiv preprint arXiv:2302.13789 (2023)

  27. Oschmann, F.: Homogenization of compressible fluids in perforated domains, Ph.D. thesis, Technische Universität Dortmund. (2022)

  28. Oschmann, F.: Homogenization of the full compressible Navier–Stokes–Fourier system in randomly perforated domains. J. Math. Fluid Mech. 24(2), 1–20 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pokorný, M., Skříšovský, E.: Homogenization of the evolutionary compressible Navier–Stokes–Fourier system in domains with tiny holes. J. Elliptic Parabol. Equ. pp. 1–31 (2021)

  30. Tartar, L.: Incompressible Fluid Flow in a Porous Medium: Convergence of the Homogenization Process. Appendix of “Non-Homogeneous Media and Vibration Theory”. Springer (1980)

  31. Yong, L., Pokorný, M.: Homogenization of stationary Navier–Stokes–Fourier system in domains with tiny holes. J. Differ. Equ. 278, 463–492 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yong, L., Schwarzacher, S.: Homogenization of the compressible Navier–Stokes equations in domains with very tiny holes. J. Differ. Equ. 265(4), 1371–1406 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Š. N. and F. O. have been supported by the Czech Science Foundation (GAČR) Project 22-01591 S. Moreover, Š. N. has been supported by Praemium Academiæ of Š. Nečasová. The Institute of Mathematics, CAS is supported by RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Oschmann.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Bogovskiĭ’s operator in 2D and improved pressure estimates

Appendix A: Bogovskiĭ’s operator in 2D and improved pressure estimates

In this section, we give an inverse to the divergence in the two-dimensional perforated domain, and estimate its norm in any \(L^q(D_\varepsilon )\). To the best of the authors’ knowledge, such estimates for two spatial dimensions are just known in the \(L^2\)-setting, see [24, Section 1.4]. Therefore, we give here an explicit proof, which might be of independent interest. As an application, we explain how to use it to prove Lemma 3.2.

Theorem A.1

Let \(D\subset {\mathbb {R}}^2\) be a bounded domain with smooth boundary and \(D_\varepsilon \) be defined as in (3). Then, there exists an operator \({\mathcal {B}}_\varepsilon \) such that for any \(q\ge 1\),

$$\begin{aligned} {\mathcal {B}}_\varepsilon :L_0^q(D_\varepsilon )=\{f\in L^q(D_\varepsilon ):\int _{D_\varepsilon } f \, \textrm{d}x =0\}\rightarrow W_0^{1,q}(D_\varepsilon ;{\mathbb {R}}^2), \end{aligned}$$

and for any \(f\in L_0^q(D_\varepsilon )\) we have

$$\begin{aligned} \textrm{div}\, {\mathcal {B}}_\varepsilon (f)=f \text { in } D_\varepsilon , \quad \Vert {\mathcal {B}}_\varepsilon \Vert _{W_0^{1,q}(D_\varepsilon )}^q \lesssim (1+C(\varepsilon ,q))\Vert f\Vert _{L^q(D_\varepsilon )}^q, \end{aligned}$$

where

$$\begin{aligned} C(\varepsilon ,q)=\varpi _\varepsilon ^{-2} a_\varepsilon ^{-q} {\left\{ \begin{array}{ll} |\log \varpi _\varepsilon |^{-q} |\varpi _\varepsilon ^{2-q}-1| &{} \text {if } q\ne 2,\\ |\log \varpi _\varepsilon |^{-1} &{} \text {if } q=2, \end{array}\right. } \end{aligned}$$

and \(\varpi _\varepsilon \) is as in (19).

Proof

We follow the idea of [9], where \(L^q\)-estimates are given for the case of three spatial dimensions. Let \(f\in L_0^q(D_\varepsilon )\). Then, there exists a function \({\textbf{u}}\in W_0^{1,q}(D)\) such that

$$\begin{aligned} \textrm{div}\,{\textbf{u}}=\tilde{f} \text { in } D, \quad \Vert {\textbf{u}}\Vert _{W_0^{1,q}(D)}\le C \Vert f\Vert _{L^q(D_\varepsilon )} \end{aligned}$$

for some constant \(C>0\) independent of \(\varepsilon \) (see [5, 13]). However, \({\textbf{u}}\) does not vanish on the holes in general. To overcome this, note that the domains \(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\setminus B_{a_\varepsilon }(z_i^\varepsilon )\) are uniform John domains (see, e.g., [27, Example 3.2.2]), so for each \(i\in K_\varepsilon \), there exists a Bogovskiĭ operator \({\mathcal {B}}_{i,\varepsilon }\) satisfying

$$\begin{aligned}&{\mathcal {B}}_{i,\varepsilon }:L_0^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\setminus B_{a_\varepsilon } (z_i^\varepsilon ))\rightarrow W_0^{1,q}(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\setminus B_{a_\varepsilon }(z_i^\varepsilon )),\\&\textrm{div}\, B_{i,\varepsilon }(g)=g \text { in } B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon )\setminus B_{a_\varepsilon }(z_i^\varepsilon ),\\ {}&\Vert {\mathcal {B}}_{i,\varepsilon }(g) \Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\setminus B_{a_\varepsilon } (z_i^\varepsilon ))} \le C \Vert g\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ) \setminus B_{a_\varepsilon }(z_i^\varepsilon ))} \end{aligned}$$

for some constant \(C>0\) independent of \(\varepsilon \) (see [8, Theorem 5.2]). Furthermore, we define \(\mathfrak {y}_\varepsilon \) as in (12), and

$$\begin{aligned} \vartheta _\varepsilon (r)={\left\{ \begin{array}{ll} 1 &{} \text {if } 0\le r< \varpi _\varepsilon a_\varepsilon /2,\\ \frac{2}{\varpi _\varepsilon a_\varepsilon }(\varpi _\varepsilon a_\varepsilon -r) &{} \text {if } \varpi _\varepsilon a_\varepsilon /2\le r < \varpi _\varepsilon a_\varepsilon ,\\ 0 &{} \text {else}. \end{array}\right. } \end{aligned}$$

As before, set for \(z_i^\varepsilon \in K_\varepsilon \) and \(x\in D\) the functions \(\eta _\varepsilon ^i(x)=\mathfrak {y}_\varepsilon (|x-z_i^\varepsilon |)\) and \(\theta _\varepsilon ^i(x)=\vartheta _\varepsilon (|x-z_i^\varepsilon |)\), and define for \({\textbf{u}}\in W^{1,q}(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))\) the operator \(L_{i,\varepsilon }\) as

$$\begin{aligned} L_{i,\varepsilon } {\textbf{u}}(x) = \theta _\varepsilon ^i(x)\bigg ({\textbf{u}}(x) -\frac{1}{|B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )|} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )} {\textbf{u}} \, \textrm{d}x \bigg ) + \eta _\varepsilon ^i(x) \frac{1}{|B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )|} \int _{B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon )} {\textbf{u}} \, \textrm{d}x. \end{aligned}$$

Note that this immediately implies \(L_{i,\varepsilon }{\textbf{u}}=0\) on \(\partial B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\) as well as \(L_{i,\varepsilon }{\textbf{u}}={\textbf{u}}\) on \(\partial B_{a_\varepsilon }(z_i^\varepsilon )\). Moreover, by Poincaré’s inequality,

$$\begin{aligned} \bigg \Vert {\textbf{u}}-\frac{1}{|B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )|} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )} {\textbf{u}} \, \textrm{d}x \bigg \Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))} \le C \varpi _\varepsilon a_\varepsilon \Vert \nabla {\textbf{u}}\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))} \end{aligned}$$

for some constant \(C>0\) independent of \(\varepsilon \). Hence, by the estimate (13) and Hölder’s inequality,

$$\begin{aligned}&\Vert \nabla L_{i,\varepsilon }{\textbf{u}}\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon ))} \le \Vert \nabla \theta _\varepsilon ^i\Vert _{L^\infty (D)} \bigg \Vert {\textbf{u}}-\frac{1}{|B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )|} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )} {\textbf{u}} \, \textrm{d}x \bigg \Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))}\\&\qquad + \Vert \nabla {\textbf{u}}\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon ))} + \Vert \nabla \eta _\varepsilon ^i\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon ))} \frac{1}{|B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )|} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )} |{\textbf{u}}| \, \textrm{d}x\\&\quad \lesssim \Vert \nabla {\textbf{u}}\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon ))} + (\varpi _\varepsilon a_\varepsilon )^{-\frac{2}{q}} a_\varepsilon ^{\frac{2}{q}-1} \Vert {\textbf{u}}\Vert _{L^q(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))} {\left\{ \begin{array}{ll} |\log \varpi _\varepsilon |^{-1} |\varpi _\varepsilon ^{2-q}-1|^\frac{1}{q} &{} \text {if } q\ne 2,\\ |\log \varpi _\varepsilon |^{-\frac{1}{2}} &{} \text {if } q=2, \end{array}\right. } \end{aligned}$$

yielding an operator \(L_{i,\varepsilon }:W^{1,q}(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))\rightarrow W_0^{1,q}(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon ))\). Eventually, we define

$$\begin{aligned} {\mathcal {B}}_\varepsilon (f)={\textbf{u}} - \sum _{i\in K_\varepsilon } L_{i,\varepsilon }{\textbf{u}} -{\mathcal {B}}_{i,\varepsilon } \textrm{div}\, L_{i,\varepsilon } {\textbf{u}}. \end{aligned}$$

Note that this operator is well defined due to

$$\begin{aligned} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )} \textrm{div} \, L_{i,\varepsilon }{\textbf{u}} \, \textrm{d}x = \int _{\partial B_{\varpi _\varepsilon a_\varepsilon } (z_i^\varepsilon )} L_{i,\varepsilon }{\textbf{u}} \cdot {\textbf{n}} \, \textrm{d}\sigma = 0 \end{aligned}$$

since \(L_{i,\varepsilon }{\textbf{u}}=0\) on \(\partial B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\). Furthermore, for any \(x\in B_{a_\varepsilon }(z_i^\varepsilon )\),

$$\begin{aligned} \textrm{div}\, L_{i,\varepsilon }{\textbf{u}}(x)=\textrm{div}\, {\textbf{u}}(x) =\tilde{f}(x)=0 \end{aligned}$$

by \(L_{i,\varepsilon }{\textbf{u}}={\textbf{u}}\) in \(B_{a_\varepsilon }(z_i^\varepsilon )\) and \(\tilde{f}(x)=0\) on \(D\setminus D_\varepsilon \). Hence,

$$\begin{aligned} \int _{B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\setminus B_{a_\varepsilon }(z_i^\varepsilon )} \textrm{div}\, L_{i,\varepsilon }{\textbf{u}}\, \textrm{d}x = 0 \end{aligned}$$

as wished. Moreover, this leads for any \(x\in B_{a_\varepsilon }(z_i^\varepsilon )\) to

$$\begin{aligned} {\mathcal {B}}_\varepsilon (f)(x)={\textbf{u}}(x)-L_{i,\varepsilon }{\textbf{u}}(x)=0, \end{aligned}$$

so indeed \({\mathcal {B}}_\varepsilon (f)=0\) on \(D\setminus D_\varepsilon \). Seeing finally that the holes \(B_{\varpi _\varepsilon a_\varepsilon }(z_i^\varepsilon )\) are disjoint, we sum up the estimates obtained to finish the proof of the theorem. \(\square \)

With the help of the operator \({\mathcal {B}}_\varepsilon \), we can show Lemma 3.2. Recalling \(a_\varepsilon =\exp (-\varepsilon ^{-\alpha })\) for some \(\alpha >2\) and \(\varpi _\varepsilon = \varepsilon ^{1+\delta }a_\varepsilon ^{-1}\) from (19), we have for any \(1\le q<2\) the bound

$$\begin{aligned} 1+C(\varepsilon ,q)&\lesssim 1 + \varpi _\varepsilon ^{-2} a_\varepsilon ^{-q} | \log \varpi _\varepsilon |^{-q} \varpi _\varepsilon ^{2-q} = 1 +(a_\varepsilon \varpi _\varepsilon | \log \varpi _\varepsilon |)^{-q} \\&\lesssim 1+\varepsilon ^{q(\alpha -1-\delta )} \lesssim 1, \end{aligned}$$

which is uniform as long as \(\delta \le \alpha -1\). Similarly, for \(q=2\), we have

$$\begin{aligned} 1+C(\varepsilon ,2)\lesssim 1+(\varpi _\varepsilon a_\varepsilon )^{-2} |\log \varpi _\varepsilon |^{-1} \lesssim 1+\varepsilon ^{\alpha -2(1+\delta )}\lesssim 1 \end{aligned}$$

as long as \(\delta \le \frac{\alpha -2}{2}\). The idea is now to test the momentum equation (7) by the function

$$\begin{aligned} \varphi (t,x)=\xi (t){\mathcal {B}}_\varepsilon \bigg [\varrho _\varepsilon ^\theta -\frac{1}{|D_\varepsilon |} \int _{D_\varepsilon } \varrho _\varepsilon ^\theta \bigg ] \end{aligned}$$

for \(\theta <\gamma -1\) and some \(\xi \in C_c^\infty ([0,T))\). Note that the function \(\varphi \) is not regular enough in the time variable to use it as test function, however, one can overcome this by using a time-regularization argument (see [10, Section 2.2.5] for details). The proof of the improved integrability of the density now follows the same lines as [6, Appendix B] (see also [27, Section 4.2.2]).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nečasová, Š., Oschmann, F. Homogenization of the two-dimensional evolutionary compressible Navier–Stokes equations. Calc. Var. 62, 184 (2023). https://doi.org/10.1007/s00526-023-02526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02526-2

Mathematics Subject Classification

Navigation