Skip to main content
Log in

Diamond-like carbon generation from graphene oxide by ion irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) thin foils were deposited on silicon and aluminum substrates and then irradiated in vacuum with 300 keV helium and argon ion beams at room temperature and at fluences ranging between 5 × 1014 ions/cm2 and 1016 ions/cm2. Attenuated total reflectance (ATR) coupled to the Fourier-transform infrared (FTIR) spectroscopy, μ-Raman spectroscopy, X-ray diffraction (XRD) and other analyses, such as Rutherford backscattering (RBS) of alpha particles, energy-dispersive X-ray (EDX) fluorescence, elastic recoil detection analysis (ERDA), scanning electron microscopy (SEM) and contact angle measurements, were used to study the effect of ion irradiation in GO. Such analytical techniques have indicated that the Ar ion implantation at high fluence may induce diamond-like-carbon (DLC) phases in the superficial irradiated layers. ATR-FTIR spectroscopy has evinced a partial removal of the oxygen functional groups with the ion fluence, indicating a GO reduction, and the presence of C=C chemical bonds when Ar irradiation is employed. Raman spectra analysis has pointed out a different behavior of GO by changing the type of ion. In fact, irradiation with 300 keV He ions induced a gradual GO reduction which increased with fluence, while the 300 keV Ar ions implantation also produced DLC, whose formation was promoted by the high energy release into GO from the Ar ions. The presence of some diamond-like crystalline phases onto the surface of the GO foil irradiated with 300 keV Ar+ ions at a fluence of 1016 ions/cm2 is also indicated by XRD spectra. RBS and EDX analyses confirm the beam-induced GO reduction from the C/O atomic ratio deduced value that grows with the He and Ar irradiations and assumes, at the same beam fluence, the highest value with the Ar+ ions. The highest carbon concentration in the Ar-irradiated rGO surface is also indicated by SEM images. The minor presence of hydrogen in the reduced GO foils has been evinced by ERDA spectrometry according to which this reduction is stronger for the Ar ion irradiation. At the highest irradiated Ar+ fluence, drastic changes on the GO surface properties have been also observed by means of wettability measurements in agreement with the suggested presence of DLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The manuscript has not associated data, more information can be given on request.

References

  1. D. Haddock, T. Parker, C. Spindloe, M. Tolley, Characterisation of diamond-like carbon (DLC) laser targets by Raman spectroscopy. J. Phys. Conf. Ser. 713, 012007 (2016)

    Article  Google Scholar 

  2. C.R. Lin, D.H. Wei, C.K. Chang, W.H. Liao, Surface and interface science and engineering optical properties of diamond-like carbon films for antireflection coating by RF magnetron sputtering method. Phys. Procedia 18, 46–50 (2011)

    Article  ADS  Google Scholar 

  3. N. Ohtake, M. Hiratsuka, K. Kanda, H. Akasaka, M. Tsujioka, K. Hirakuri, A. Hirata, T. Ohana, H. Inaba, M. Kano, H. Saitoh, Properties and classification of diamond-like carbon films. Materials 14, 315 (2021)

    Article  ADS  Google Scholar 

  4. J. Deng, M. Braun, DLC multilayer coatings for wear protection. Diam. Relat. Mater. 4(7), 936–943 (1995)

    Article  ADS  Google Scholar 

  5. A. Galbiati, S. Lynn, K. Oliver, F. Schirru, T. Nowak, B. Marczewska, J.A. Dueñas, R. Berjillos, I. Martel, L. Lavergne, Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact. Ieee Trans. Nucl. Sci. 56(4), 1863 (2009)

    Article  ADS  Google Scholar 

  6. Y. Lifshitz, G.D. Lempert, E. Grossman, H.J. Scheibe, S. Voellmar, B. Schultrich, A. Breskin, R. Chechik, E. Shefer, D. Bacon, R. Kalish, A. Hoffman, Optical and photoemission studies of DLC films prepared with a systematic variation of the sp3: sp2 composition. Diam. Relat. Mater. 6(5–7), 687–693 (1997)

    Article  ADS  Google Scholar 

  7. T. Ohana, T. Nakamura, M. Suzuki, A. Tanaka, Y. Koga, Tribological properties and characterization of DLC films deposited by pulsed bias CVD. Diam. Relat. Mater. 13(4–8), 1500–1504 (2004)

    Article  ADS  Google Scholar 

  8. A. Mangione, L. Torrisi, A. Picciotto, F. Caridi, D. Margarone, E. Fazio, A. La Mantia, G. Di Marco, Carbon nanocrystals produced by pulsed laser ablation of carbon. Radiat. Eff. Defect Solids 160(10–12), 655–662 (2005)

    Article  Google Scholar 

  9. F.M. Kimock, B.J. Knapp, Commercial applications of ion beam deposited diamond-like carbon (DLC) coatings. Surf. Coat. Technol. 56(3), 273–279 (1993)

    Article  Google Scholar 

  10. L. Qin, Z. Wu, X. Zhang, A. Liu, B. Liao, J. Deng, Modification of DLC films by Ni+ ions implantation. NIM B 266(18), 3939–3944 (2008)

    Article  ADS  Google Scholar 

  11. G. Thorwarth, C. Hammerl, M. Kuhn, W. Assmann, B. Schey, B. Stritzker, Investigation of DLC synthesized by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 193(1–3), 206–212 (2005)

    Article  Google Scholar 

  12. H. Watanabe, K. Takahashi, M. Iwaki, Structural characterization of ion implanted pyrolytic graphite. NIM B 257, 549–553 (2007)

    Article  ADS  Google Scholar 

  13. S. Buchegger, N. Schuster, B. Stritzker, A. Wixforth, C. Westerhausen, Multilayer diamond-like amorphous carbon coatings produced by ion irradiation of polymer Films. Surf. Coat. Technol. 327, 42–47 (2017)

    Article  Google Scholar 

  14. P. Malinský, A. Macková, R. Mikšová, H. Kováčiková, M. Cutroneo, J. Luxa, D. Bouša, B. Štrochová, Z. Sofer, Graphene oxide layers modified by light energetic ions. Phys. Chem. Chem. Phys. 19, 10282–10291 (2017)

    Article  Google Scholar 

  15. L. Torrisi, L. Silipigni, D. Manno, A. Serra, V. Nassisi, M. Cutroneo, A. Torrisi, Investigations on graphene oxide for ion beam dosimetry application. Vacuum 178, 109451 (2020)

    Article  ADS  Google Scholar 

  16. L. Silipigni, G. Salvato, G. Di Marco, B. Fazio, A. Torrisi, M. Cutroneo, L. Torrisi, Band-like transport in high vacuum thermal reduced graphene oxide films. Vacuum 165, 254–261 (2019)

    Article  ADS  Google Scholar 

  17. L. Torrisi, M. Cutroneo, A. Torrisi, L. Silipigni, Measurements on five characterizing properties of graphene oxide and reduced graphene oxide foils. Phys. Status Solidi A 219(6), 2100628 (2022)

    Article  ADS  Google Scholar 

  18. D. Manno, A. Serra, A. Buccolieri, L. Calcagnile, M. Cutroneo, A. Torrisi, L. Silipigni, L. Torrisi, Structural and spectroscopic investigations on graphene oxide foils irradiated by ion beams for dosimetry application. Vacuum 188, 110185 (2021)

    Article  ADS  Google Scholar 

  19. D. Manno, L. Torrisi, L. Silipigni, A. Buccolieri, M. Cutroneo, A. Torrisi, L. Calcagnile, A. Serra, From GO to rGO: an analysis of the progressive rippling induced by energetic ion irradiation. Appl. Surf. Sci. 586, 152789 (2022)

    Article  Google Scholar 

  20. L. Torrisi, D. Manno, A. Serra, L. Calcagnile, A. Torrisi, M. Cutroneo, L. Silipigni, Structural phase modifications induced by energetic ion beams in graphene oxide. Vacuum 193, 110513 (2021)

    Article  ADS  Google Scholar 

  21. M. Cutroneo, L. Torrisi, L. Silipigni, A. Michalcova, V. Havranek, A. Mackova, P. Malinsky, V. Lavrentiev, P. Noga, J. Dobrovodsky, P. Slepicka, D. Fajstavr, L. Andò, V. Holy, Compositional and structural modifications by ion beam in graphene oxide for radiation detection studies. Int. J. Mol. Sci. 23, 12563 (2022)

    Article  Google Scholar 

  22. Graphenea, high quality graphene producer, actual website 2023: products–graphenea (2023)

  23. L. Torrisi, M. Cutroneo, V. Havranek, L. Silipigni, B. Fazio, M. Fazio, G. Di Marco, A. Stassi, A. Torrisi, Self-supporting graphene oxide films preparation and characterization methods. Vacuum 160, 1–11 (2019)

    Article  ADS  Google Scholar 

  24. K. Park, D. Choi, J. Hong, Nanostructured polymer thin films fabricated with brush-based layer-by-layer self- assembly for site-selective construction and drug release. Sci. Rep. 8(3365), 1–9 (2018)

    Google Scholar 

  25. J.T. Illakkiya, P.U. Rajalakshmi, R. Oommen, Nebulized spray pyrolysis: a new method for synthesis of graphene film and their characteristics. Surf. Coat. Technol. 307, 65–72 (2016)

    Article  Google Scholar 

  26. L. Torrisi, L. Silipigni, M. Cutroneo, A. Torrisi, Mass spectrometry of graphene oxide thermal reduction in vacuum. Radiat. Eff. Defects Solids 178(1–2), 28–39 (2013)

    ADS  Google Scholar 

  27. A. Macková, P. Malinský, M. Cutroneo, V. Havránek, V. Voseček, J. Flaks, V. Semián, L. Vonka, V. Zach, P. Bém, R. Běhal, M. Čihák, J. Mrázek, P. Krist, D. Poklop, M. Štefánik, J. Štursa, V. Olšanský, D. Chvátil, J. Kučera, M. Němec, I. Světlík, J. Kameník, J. Tecl, Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS. Eur. Phys. J. Plus 136, 558 (2021)

    Article  Google Scholar 

  28. J.F. Ziegler, M. Ziegler, J.P. Biersack, SRIM: the stopping and range of ions in matter. Nucl. Instrum. Methods B 268, 1818–1823 (2010)

    Article  ADS  Google Scholar 

  29. M. Mayer, SIMNRA version 6.06, Max-Planck-Institut fur Plasmaphysik, Garching, Germany. http://home.rzg.mpg.de/~mam/Download.html (2011)

  30. PeakFit® software v4.11, Systat Software Inc., San Jose, CA, USA, actual website 2023: Download Peakfit Software–Inpixon–Systatsoftware.com (2023)

  31. L. Torrisi, C. Scolaro, N. Restuccia, Wetting ability of biological liquids in presence of metallic nanoparticles. J. Mater. Sci. Mater. Med. 28, 63–74 (2017)

    Article  Google Scholar 

  32. S. Srinivasan, Y. Tang, Y.S. Li, Q. Yang, A. Hirose, Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced mocompatibility on PTFE. Appl. Surf. Sci. 258(20), 8094–8099 (2012)

    Article  ADS  Google Scholar 

  33. Z. Ciplak, N. Yildiz, A. Calimli, Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotubes Carbon Nanostruct. 23, 361–370 (2014)

    Article  ADS  Google Scholar 

  34. T. Petit, L. Puskar, FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 89, 52–66 (2018)

    Article  ADS  Google Scholar 

  35. C.H. Su, C.R. Lin, C.Y. Chang, H.C. Hung, T.Y. Lin, Mechanical and optical properties of diamond-like carbon thin films deposited by low temperature process. Thin Solid Films 498, 220–223 (2006)

    Article  ADS  Google Scholar 

  36. M. Gilo, A. Azran, Low reflectance DLC coatings on various ir substrates, infrared technology and applications XXXVIII, edited by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton. Proc. SPIE 8353, 835320 (2012)

    Article  Google Scholar 

  37. L. Bokobza, J. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1, 77–94 (2015). https://doi.org/10.3390/c1010077

    Article  Google Scholar 

  38. X. Díez-Betriu, S. Álvarez-García, C. Botas, P. Álvarez, J. Sánchez-Marcos, C. Prieto, R. Menéndez, A. de Andrés, Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C 1, 6905–6912 (2013)

    Article  Google Scholar 

  39. G. Irmer, A. Dorner-Reisel, Micro-Raman studies on DLC coatings. Adv. Eng. Mater. 7(8), 7694 (2005)

    Article  Google Scholar 

  40. H. Pang, X. Wang, G. Zhang, H. Chen, G. Lv, S. Yang, Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy. Appl. Surf. Sci. 256, 6403–6407 (2010)

    Article  ADS  Google Scholar 

  41. Q.T. Ain, S.H. Haq, A. Alshammari, M.A. Al-Mutlaq, M.N. Anjum, The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein J. Nanotechnol. 10, 901–911 (2019)

    Article  Google Scholar 

  42. M. Pandey, R. D’Cunha, A.K. Tyagi, Defects in CVD diamond: Raman and XRD studies. J. Alloy. Compd. 333, 260–265 (2002)

    Article  Google Scholar 

  43. N.W. Khun, P.M. Lee, W.Q. Toh, E. Liu, Tribological behavior of nickel-doped diamond-like carbon thin films prepared on silicon substrates via magnetron sputtering deposition. Tribol. Trans. 59(5), 845–855 (2016)

    Article  Google Scholar 

  44. M. Kalin, M. Polajnar, The wetting of steel, DLC coatings, ceramics and polymers with oils and water: the importance and correlations of surface energy, surface tension, contact angle and spreading. Appl. Surf. Sci. 293, 97–108 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research has been realized at the CANAM (Center of Accelerators and Nuclear Analytical Methods) infrastructure LM 2015056. This publication was supported by OP RDE, MEYS, Czech Republic under the project CANAM OP, CZ.02.1.01/0.0/0.0/16_013/0001812 and by the Czech Science Foundation (GACR No. 23‐06702S). The authors thank the INFN-Sez. di Catania for the support given at the CIMA Project.

Author information

Authors and Affiliations

Authors

Contributions

LT: wrote the paper, prepared the samples, carried out experimental measurements and coordinated the research; LC: worked on the implantation of He and Ar ions in GO; BF: was in charge of the Raman analyses; MC: was involved in the RBS and ERDA analyses; AT: was involved in the collection of references and FTIR analyses; PGB: was involved in the SEM, EDX and XRD analyses; LS: was involved in the ATR-FTIR analyses, the Raman spectra deconvolution and the writing of the paper.

Corresponding author

Correspondence to L. Torrisi.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest for this article. The first Author, Lorenzo Torrisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L., Calcagno, L., Fazio, B. et al. Diamond-like carbon generation from graphene oxide by ion irradiation. Appl. Phys. A 129, 626 (2023). https://doi.org/10.1007/s00339-023-06904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06904-7

Keywords

Navigation