Skip to main content
Log in

CO2 diffusion in graphene oxide and reduced graphene oxide foils and its comparison with N2 and Ar

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Measurements of the carbon dioxide (CO2) diffusion in graphene oxide (GO) and reduced graphene oxide (rGO) vs. temperature have been performed using uniform GO thin foils with15 μm thickness. Regarding rGO, its foils have been obtained by submitting GO at a temperature of 130 °C in vacuum for 30 min. The CO2 diffusion has been controlled by the gas pressure gradient applied to two faces of the thin foils versus the time and the temperature. The calculated CO2 coefficient diffusions have been compared with those relative to the nitrogen (N2) and argon (Ar) gases obtained in previous measurements. The deduced diffusion coefficients are different for the three investigated gases, but remain of the order of 10–3 cm2/s. At room temperature in GO the minimum value is obtained for nitrogen, while the highest one for Ar. Indeed, at 100 °C in rGO the minimum value is deduced for nitrogen and the maximum one for the carbon dioxide. The different diffusion coefficients can be attributed not only to the different size, shape and atomic mass of the investigated gases, but also to the inner lattice structure of the GO and rGO foils. GO contains water and oxygen functional groups which obstacle the diffusion process. rGO is poorer of oxygen functional groups and of water, partially enhancing the diffusion, but it has a high compactness and density which may reduce the total diffusivity. The obtained results, their correlation with the inner structure of the graphene sheets and the comparison between measurements and the literature data are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni (eds.), Graphene Science Handbook, Elecrical and Optical Properties, CRC Press (Taylor & Francis Group, Boca Raton, 2016)

    Google Scholar 

  2. L. Torrisi, L. Silipigni, M. Cutroneo, A. Torrisi, Graphene oxide as a radiation sensitive material for XPS dosimetry. Vacuum 173(109175), 1–8 (2020)

    Google Scholar 

  3. L. Silipigni, G. Salvato, G. Di Marco, B. Fazio, A. Torrisi, M. Cutroneo, L. Torrisi, Band-like transport in high vacuum thermal reduced graphene oxide films. Vacuum 165, 254–261 (2019)

    Article  ADS  Google Scholar 

  4. L. Torrisi, L. Silipigni, M. Cutroneo, Radiation effects of IR laser on graphene oxide irradiated in vacuum and in air. Vacuum 153, 122–131 (2018)

    Article  ADS  Google Scholar 

  5. L. Torrisi, L. Silipigni, L. Calcagno, M. Cutroneo, A. Torrisi, Carbon-based innovative materials for nuclear physics applications (CIMA) INFN project. REDS 176(1–2), 100–118 (2021)

    ADS  Google Scholar 

  6. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni (eds.), Graphene Science Handbook, Mechanical and Chemical Properties, CRC Press (Taylor & Francis Group, Boca Raton, 2016)

    Google Scholar 

  7. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct in Chem. 8, 123–137 (2018)

    Article  Google Scholar 

  8. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cu, Biocompatibility of graphene oxide. Nanoscale Res Lett. 6(1), 8 (2011)

    Article  ADS  Google Scholar 

  9. S. Santhoshkumar, E. Murugan, Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl. Surf. Sci. 553, 149544 (2021)

    Article  Google Scholar 

  10. E. Murugan, S. Govindaraju, S. Santhoshkumar, Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors. Electrochim. Acta 392, 138973 (2021)

    Article  Google Scholar 

  11. L. Torrisi, G. Salvato, M. Cutroneo, F. Librizzi, A. Torrisi, L. Silipigni, Source-drain electrical conduction and radiation detection in graphene-based field effect transistor (GFET). JINST (2022). https://doi.org/10.1088/1748-0221/17/02/P02008

    Article  Google Scholar 

  12. D. Gonzalez-Campelo, M. Fernandez-Raga, A. Gomez-Gutierrez, M.I. Guerra-Romero, J.M. Gonzalez-Dominguez, Extraordinary protective efficacy of graphene oxide over the stone-based cultural heritage. Adv. Mater. Interfaces 2101012, 1–13 (2021)

    Google Scholar 

  13. H.H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, Fabrication of reduced graphene oxide membranes for water desalination. J. Membr. Sci. 572, 12–19 (2019)

    Article  Google Scholar 

  14. E. Murugan, K. Kumar, Fabrication of SnS/TiO 2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol tryptophan, and caffeine in pharmaceutical formulations. Anal. Chem 91(9), 5667–5676 (2019)

    Article  Google Scholar 

  15. L. Torrisi, V. Havranek, M. Cutroneo, A. Mackova, L. Silipigni, A. Torrisi, Characterization of reduced Graphene oxide films used as stripper foils in a 30-MV Tandetron. Radiat. Phys. Chem. 165, 108397 (2019)

    Article  Google Scholar 

  16. H.B. Park, H.W. Yoon, Y.H. Cho, Graphene oxide membrane for molecular separation, in Graphene Oxide: Fundamentals and Applications. ed. by A.M. Dimiev, S. Eigler (John Wiley & Sons, New York, 2017), pp. 296–313

    Google Scholar 

  17. S.K. Alen, S.W. Nam, S.A. Dastgheib, Recent advances in graphene oxide membranes for gas separation applications. Int. J. Mol. Sci. 20, 5609 (2019)

    Article  Google Scholar 

  18. L. Torrisi, L. Silipigni, G. Salvato, Graphene oxide/Cu junction as relative humidity sensor. J. Mater. Sci.: Mater. Electron. 31(14), 11001–11009 (2020)

    Google Scholar 

  19. J.W. Yan, W. Zhang, An atomistic-continuum multiscale approach to determine the exact thickness and bending rigidity of monolayer graphene. J. Sound Vib 514, 116464 (2021)

    Article  Google Scholar 

  20. C. Cao, M. Daly, C.V. Singh, Y. Sun, T. Filleter, High strength measurement of monolayer graphene oxide. Carbon 81, 497–504 (2015)

    Article  Google Scholar 

  21. D. Manno, A. Serra, A. Buccolieri, L. Calcagnile, M. Cutroneo, A. Torrisi, L. Silipigni, L. Torrisi, Structural and spectroscopic investigations on graphene oxide foils irradiated by ion beams for dosimetry application. Vacuum 188, 110185 (2021)

    Article  ADS  Google Scholar 

  22. Calculla, Table of bond lengths in chemical molecules, actual website 2022: CALCULLA - Table of bond lengths in chemical molecules, http://calculla.com/bond_lengths. Accessed 16 June 2022

  23. K. Irving, M. Kieninger, O.N. Ventura, Basis set effects in the description of the Cl-O bond in ClO and XClO/ClOX isomers (X = H, O, and Cl) using DFT and CCSD(T) methods. J. Chem. 23, 4057848 (2019)

    Google Scholar 

  24. N.N. Greenwood, A. Earnshaw (eds.), Chemistry of the Elements (Elsevier, Amsterdam, 2012)

    Google Scholar 

  25. Argon – Wikipedia, actual website 2022: Argon – Wikipedia, http://en.wikipedia.org/wiki/Argon. Accessed 16 June 2022

  26. NIST database, actual website: Carbon dioxide (nist.gov). http://webbook.nist.gov/cgi/cbook/cgi?Name=Carbon+dioxide. Accessed 16 June 2022

  27. T.T. Trinh, T.J.H. Vlugt, M.B. Hagg, D. Bedeaux, S. Kjelstrup, Simulating CO2 adsorption and diffusion on a graphite surface, Int. Conf. 12th Joint European Thermodynamics Conf. Brescia 1, 514–518 (2013)

    Google Scholar 

  28. J.J. Kane, A.C. Matthews, C.J. Orme, C.I. Contescu, W.D. Swank, W.E. Windes, Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite. Carbon 136, 369e379 (2018)

    Article  Google Scholar 

  29. L. Torrisi, M. Cutroneo, A. Torrisi, L. Silipigni, Nitrogen diffusion in graphene oxide and reduced graphene oxide foils. Vacuum 194, 110632 (2021)

    Article  ADS  Google Scholar 

  30. S. Jiao, Z. Xu, Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl. Mater. Interfaces 7, 9052–9059 (2015)

    Article  Google Scholar 

  31. R. Devanathan, D. Chase-Woods, Y. Shin, D.W. Gotthold, Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow. Sci. Rep. 6, 29484 (2016)

    Article  ADS  Google Scholar 

  32. L. Torrisi, M. Cutroneo, A. Torrisi, L. Silipigni, Measurements on five characterizing properties of graphene oxide and reduced graphene oxide foils. Physics, Solid State A 2100628, 1–9 (2022). https://doi.org/10.1002/pssa.202100628

    Article  Google Scholar 

  33. B. Flaconneche, J. Martin, M.H. Klopffer, Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly(vinylidene fluoride), oil & gas science and technology – rev. IFP 56(3), 261–278 (2001)

    Google Scholar 

  34. W. Jost (ed.), Diffusion in solids (Academic Press, New York, Liquids and Gases, 1960)

    Google Scholar 

  35. L. Torrisi, L. Silipigni, A. Torrisi, Argon diffusion in graphene oxide and reduced graphene oxide foils and its comparison with nitrogen. Vacuum 200, 110993 (2022)

    Article  ADS  Google Scholar 

  36. H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators, B Chem. 157(1), 310–313 (2011)

    Article  Google Scholar 

  37. Graphenea, High quality graphene producer, actual website 2022: Products – Graphenea. https://www.graphenea.com/collections/all#graphene-oxide. Accessed 16 June 2022

  38. L. Torrisi, M. Cutroneo, V. Havranek, L. Silipigni, B. Fazio, M. Fazio, G. Di Marco, A. Stassi, A. Torrisi, Self-supporting graphene oxide films preparation and characterization methods. Vacuum 160, 1–11 (2019)

    Article  ADS  Google Scholar 

  39. T. Liu, L. Tian, N. Graham, B. Yang, W. Yu, K. Sun, Regulating the interlayer spacing of graphene oxide membranes and enhancing their stability by use of PACl. Environ. Sci. Technol. 53(20), 11949–11959 (2019)

    Article  ADS  Google Scholar 

  40. Y. Qian, X. Zhang, C. Liu, C. Zhou, A. Huang, Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance. Desalination 460, 56–63 (2019)

    Article  Google Scholar 

  41. P. Banerjee, S. Yashonath, B. Bagchia, Rotation driven translational diffusion of polyatomic ions in water: a novel mechanism for breakdown of Stokes-Einstein relation. J. Chem. Phys. 146, 164502 (2017)

    Article  ADS  Google Scholar 

  42. A. Visco, C. Scolaro, A. Torrisi, L. Torrisi, Diffusion of nitrogen gas through polyethylene based films. Polym. Cryst.. 4(6), e10207 (2021)

    Google Scholar 

  43. L. Torrisi, A. Ilacqua, F. Caridi, N. Campo, A. Picciotto, R. Barnà, D. De Pasquale, M. Trimarchi, A. Trifirò, L. Auditore, Measurements of gas diffusion in polyethylene irradiated by 5 MeV electron beams. Rad. Eff. and Def. in Solids 161(1), 3–13 (2006)

    Article  ADS  Google Scholar 

  44. Y. Yuan, Z. Qu, Q. Wang, X. Sun, Nonlinear conductive characteristics of ZnO-coated graphene nanoplatelets-carbon nanotubes/epoxy resin composites. Polymers 12, 1634 (2020)

    Article  Google Scholar 

  45. H.W. Yoon, T.H. Lee, C.M. Doherty, T.H. Choi, J.S. Roh, H.W. Kim, Y.H. Cho, S.H. Do, B.D. Freeman, H.B. Park, Origin of CO2-philic sorption by graphene oxide layered nanosheets and their derivatives. J. Phys. Chem. Lett. 211(6), 2356–2362 (2020)

    Article  Google Scholar 

  46. A. Khakpay, F. Rahmani, S. Nouranian, P. Scovazzo, Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. J. Phys. Chem. C 121(22), 12308–12320 (2017)

    Article  Google Scholar 

  47. S.K. Alen, S.W. Nam, S.A. Dastgheib, Recent advances in graphene oxide membranes for gas separation applications. Int J Mol Sci 20(22), 5609 (2019)

    Article  Google Scholar 

  48. Degrees of freedom (Physics and Chemistry) – Wikipedia, actual website 2022: Degrees of freedom (physics and chemistry) - Wikipedia. http://en.wikipedia.org/wiki/Degrees_of_freedom_%28physics_and_chemistry%29. Accessed 16 June 2022

Download references

Acknowledgements

This research was supported by INFN, CIMA project, developed at the INFN Sections of Catania and Lecce (Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Torrisi or A. Torrisi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L., Silipigni, L., Cutroneo, M. et al. CO2 diffusion in graphene oxide and reduced graphene oxide foils and its comparison with N2 and Ar. Appl. Phys. A 128, 589 (2022). https://doi.org/10.1007/s00339-022-05735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05735-2

Keywords

Navigation