Skip to main content
Log in

Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin with its low melting point and vapor pressure is a good model material to investigate laser ablation mechanisms under various ambient conditions. Here we measured the nanosecond-laser-induced damage thresholds of tin in vacuum, air, and water. The threshold fluence is found to be ~ 0.1 J/cm2 regardless of the environment unlike more refractory metals when threshold values in water are considerably higher than those in air. Analysis of the morphology and chemical composition of the irradiated surface as well as numerical simulations of tin laser heating demonstrate that the observed surface modification is due to melting but not oxidation. For the case of water environment, the conductive heat transfer to water is found to play only a minor role in tin heating and melting. The simulations show also that the formation of a water vapor layer near the tin surface occurs at a considerably higher fluence, above 0.15 J/cm2, and thus the surface damage is not affected by scattering of the incident laser light by the vapor–liquid interface, typical for more refractory metals. Peculiarities of laser ablation of low-melt materials in liquids and nanoparticle formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Streich, S. Koenen, M. Lelle, K. Peneva, S. Barcikowski, Appl. Surf. Sci. 348, 92 (2015)

    Article  Google Scholar 

  2. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

    Article  Google Scholar 

  3. P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Surf. Sci. 252, 4373 (2006)

    Article  ADS  Google Scholar 

  4. I. Lee, S. W. Han, and K. Kim, Chem. Commun. 1782 (2001)

  5. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  6. K. Liu, J. Chen, H. Qu, Y. Dong, Y. Gao, J. Liu, X. Liu, Y. Zou, H. Zeng, Appl. Phys. Lett. 113 (2018)

    Article  ADS  Google Scholar 

  7. R. Streubel, S. Barcikowski, B. Gökce, Opt. Lett. 41, 1486 (2016)

    Article  ADS  Google Scholar 

  8. S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, ChemPhysChem 18, 1012 (2017)

    Article  Google Scholar 

  9. S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Appl. Phys. A 89, 373 (2007)

    Article  ADS  Google Scholar 

  10. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, G.A. Shafeev, Appl. Surf. Sci. 255, 5346 (2009)

    Article  ADS  Google Scholar 

  11. C. Rehbock, J. Jakobi, L. Gamrad, S. van der Meer, D. Tiedemann, U. Taylor, W. Kues, D. Rath, S. Barcikowski, Beilstein J. Nanotechnol. 5, 1523 (2014)

    Article  Google Scholar 

  12. S. Grade, J. Eberhard, J. Jakobi, A. Winkel, M. Stiesch, S. Barcikowski, Gold Bull. 47, 83 (2014)

    Article  Google Scholar 

  13. R. Anton, P. Kreutzer, Phys. Rev. B - Condens. Matter Mater. Phys. 61, 16077 (2000)

    Article  ADS  Google Scholar 

  14. P. Wagener, I. Shyjumon, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3068 (2013)

    Article  Google Scholar 

  15. M. Dell’Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015)

    Article  Google Scholar 

  16. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Appl. Surf. Sci. 396, 1765 (2017)

    Article  ADS  Google Scholar 

  17. A.V. Bulgakov, A.B. Evtushenko, Y.G. Shukhov, I. Ozerov, W. Marine, Quantum Electron. 40, 1021 (2010)

    Article  ADS  Google Scholar 

  18. N.M. Bulgakova, A.B. Evtushenko, Y.G. Shukhov, S.I. Kudryashov, A.V. Bulgakov, Appl. Surf. Sci. 257, 10876 (2011)

    Article  ADS  Google Scholar 

  19. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  20. N.M. Bulgakova, A.V. Bulgakov, L.P. Babich, Appl. Phys. A 79, 1323 (2004)

    Article  ADS  Google Scholar 

  21. V.P. Scripov, Metastable liquids (Wiley, Hoboken, 1973)

    Google Scholar 

  22. Y.D. Varlamov, Y.P. Meshcheryakov, M.P. Predtechenskii, S.I. Lezhnin, S.N. Ul’yankin, J. Appl. Mech. Tech. Phys. 48, 213 (2007)

    Article  ADS  Google Scholar 

  23. P.V. Skripov, A.P. Skripov, Int. J. Thermophys. 31, 816 (2010)

    Article  ADS  Google Scholar 

  24. V.E. Zinov'ev, Handbook of thermophysical properties of metals at high temperature (Nova Science Publ, New York, 1996)

    Google Scholar 

  25. H. Jiang, K.S. Moon, H. Dong, F. Hua, C.P. Wong, Chem. Phys. Lett. 429, 492 (2006)

    Article  ADS  Google Scholar 

  26. A.I. Golovashkin, G.P. Motulevich, Sov. Phys. JETP 19, 310 (1964)

    Google Scholar 

  27. O. Benavides, L. De La Cruz May, A. Flores Gil, J.A. Lugo Jimenez, Opt. Lasers Eng. 68, 83 (2015)

    Article  Google Scholar 

  28. Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  29. O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Appl. Surf. Sci. 396, 1736 (2017)

    Article  ADS  Google Scholar 

  30. M.A. Duncan, Rev. Sci. Instrum. 83, 041101 (2012)

    Article  ADS  Google Scholar 

  31. M. Jadraque, A.B. Evtushenko, D. Ávila-Brande, M. López-Arias, V. Loriot, Y.G. Shukhov, L.S. Kibis, A.V. Bulgakov, M. Martín, J. Phys. Chem. C 117, 5416 (2013)

    Article  Google Scholar 

  32. B. Kumar, R.K. Thareja, J. Appl. Phys. 108, 064906 (2010)

    Article  ADS  Google Scholar 

  33. B. Kumar, D. Yadav, R.K. Thareja, J. Appl. Phys. 110, 074903 (2011)

    Article  ADS  Google Scholar 

  34. L. Torrisi, D. Margarone, Plasma Sources Sci. Technol. 15, 635 (2006)

    Article  ADS  Google Scholar 

  35. G.W. Yang, Prog. Mater Sci. 52, 648 (2007)

    Article  Google Scholar 

  36. M.J. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  37. H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, X. Hou, Thin Solid Films 518, 5188 (2010)

    Article  ADS  Google Scholar 

  38. G. Yang, Laser ablation in liquids: principles and applications in the preparation of nanomaterials (Jenny Stanford Publishing, New York, 2012)

    Book  Google Scholar 

  39. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Quantum Electron. 47, 343 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research within the projects No. 18-38-00057 (experimental studies) and No. 18-08-01383 (modeling). The SEM measurements were carried out under state contract with IT SB RAS. AVB also acknowledges financial support from the ERDF and the state budget of the Czech Republic (project BIATRI: No. CZ.02.1.01/0.0/0.0/15_003/0000445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Starinskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starinskiy, S.V., Rodionov, A.A., Shukhov, Y.G. et al. Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water. Appl. Phys. A 125, 734 (2019). https://doi.org/10.1007/s00339-019-3028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3028-4

Navigation