Skip to main content

Advertisement

Log in

The Influence of High and Low Negative Pressure Liposuction and Various Harvesting Techniques on the Viability and Function of Harvested Cells—a Systematic Review of Animal and Human Studies

  • Review
  • Fat Injection
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

An understanding of fat grafting methodology, techniques and patient-related factors is crucial when considering fat grafting. Multiple factors can influence the success of a fat graft and consequently the outcome of the procedure. The aim of this systematic review is to elucidate the influence of negative pressure and various techniques of fat harvesting on the viability and function of cells, particularly adipocytes and adipose-derived stem cells.

Methods

We conducted a literature search from 1975 to 2020 using the PubMed bibliography, ScienceDirect, SCOPUS and the Google Scholar databases which produced 168,628 articles on the first pass. After applying all the exclusion criteria by two independent reviewers, we were left with 21 articles (level IV of Oxford Centre for Evidence-Based Studies and Grade C of Grade Practice Recommendation from the American Society of Plastic Surgeons) on which this review is based.

Results

From 11 studies focused on different negative pressures, no one found using high negative pressure advantageous. Summarising 13 studies focused on various harvesting techniques (excision, syringe, and pump-machine), most often equal results were reported, followed by excision being better than either syringe or liposuction.

Conclusion

From our systematic review, we can conclude that the low negative pressure seems to yield better results and that the excision seems to be the most sparing method for fat graft harvesting. However, we have to point out that this conclusion is based on a very limited number of statistically challengeable articles and we recommend well-conducted further research.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bucky LP, Perced I (2008) The Science of Autologous Fat Grafting: Views on Current and Future Approaches to Neoadipogenesis. Aesth Surg J 28(3):313–321

    Article  Google Scholar 

  2. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ (2001) The biology of white adipocyte proliferation. Obes Rev 2(4):239–254

    Article  CAS  PubMed  Google Scholar 

  3. Trojahn Kolle SF, Oliveri RS, Glovinski PV, Elberg JJ, Fischer-Nielsen A, Drzewiecki KT (2012) Importance of mesenchymal stem cells in autologous fat grafting: a systematic review of existing studies. J Plast Surg Hand Surg 46:59–68

    Article  PubMed  Google Scholar 

  4. Geissler PJ, Davis K, Roostaeian J, Roostaeian J, Unger J, Huang J, Rohrich RJ (2014) Improving fat transfer viability: the role of aging, body mass index and harvest site. Plast Reconstr Surg 134:227–232

    Article  CAS  PubMed  Google Scholar 

  5. Madonna R, Renna FV, Cellini C, Cotellese R, Picardi N, Francomano F, Innocenti P, De Caterina R (2011) Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 41:126–133

    Article  PubMed  Google Scholar 

  6. Choi YD, Shin HS, Mok JO (2014) Impaired survival of autologous fat grafts by diabetes mellitus in an animal model: a pilot study. Aesthet Surg J. 24(7):1246–1252

    Google Scholar 

  7. Jung JA, Kim YW, Cheon YW (2014) Effects of the diabetic condition on grafted fat survival:an experimental study using streptozotocin-induced diabetic rats. Arch Plast Surg 41(3):241–247

    Article  PubMed  PubMed Central  Google Scholar 

  8. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende ARR, Grechi B, Gehlen D, Machado DC (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122:614–618

    Article  CAS  PubMed  Google Scholar 

  9. Kølle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhof M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzeweicki KT (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382:1113–1120

    Article  PubMed  Google Scholar 

  10. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Alba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshmiura K (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382

    Article  CAS  PubMed  Google Scholar 

  11. Rohrich RJ, Sorokin ES, Brown SA (2004) In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg. 113:391–395

    Article  PubMed  Google Scholar 

  12. Ullmann Y, Shoshani O, Fodor A, Ramon Y, Carmi N, Eldor L, Gilhar A (2005) Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Dermatol Surg 31:1304–1307

    Article  CAS  PubMed  Google Scholar 

  13. Li K, Gao J, Zhang Z, Li J, Cha P, Liao Y, Wang G, Lu F (2013) Selection of donor site for fat grafting and cell isolation. Aesthetic Plast Surg 37:153–158

    Article  PubMed  Google Scholar 

  14. Small K, Choi M, Petruolo O, Lee C, Karp N (2014) Is there an ideal donor site of fat for secondary breast reconstruction? Aesthet Surg J 34:545–550

    Article  PubMed  Google Scholar 

  15. Garza RM, Paik KJ, Chung MT, Duscher D, Gurtner GC, Longaker MT, Wan DC (2014) Studies in fat grafting: Part III. Fat grafting irradiated tissue improved skin quality and decreased fat graft retention. Plast Reconstr Surg 134:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang W, Xia H, Li J, Zhao RC (2011) Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents. Cytotechnology 63:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsuji W, Schnider JT, McLaughlin MM, Schweizer R, Zhang W, Solari MG, Rubin JP, Marra KG, Plock JA, Gorantla VS (2015) Effects of immunosuppressive drugs on viability and susceptibility of adipose- and bone marrow-derived mesenchymal stem cells. Front Immunol. https://doi.org/10.3389/fimmu.2015.00131,April16,2015

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632–637

    Article  PubMed  CAS  Google Scholar 

  19. Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG (2013) Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol 14:34–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Harmelen V, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I, Hauner H (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895

    Article  PubMed  Google Scholar 

  21. Gutowski KA (2009) ASPS Fat Graft Task Force. Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 124:272–280

    Article  CAS  PubMed  Google Scholar 

  22. Salinas HM, Broelsch GF, Fernandes JR, McCormac MC, Meppelink AM, Randolph MA, ColwellAS AWG Jr (2014) Comparative analysis of processing methods in fat grafting. Plast Reconstr Surg 134:675–683

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel A, Champaneria MC, Maxwell GP (2015) Fat grafting and breast reconstruction: tips for ensuring predictability. Gland Surg 4(3):232–243

    PubMed  PubMed Central  Google Scholar 

  24. Condé-Green A, Gontijo de Amorim NF, Pitanguy I (2010) Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: A comparative study. J Plast Reconstr Aesthet Surg 63:1375–1381

    Article  PubMed  Google Scholar 

  25. Ince B, Oltulu P, Yildirim MEC, Ismayilzade M, Dadaci M (2019) Effects of aspiration time on immediate viability of adipocyte cell in ultrasound-assisted liposuction (UAL) and in traditiona suction-assisted lipectomy (SAL). J Plast Surg Hand Surg 53(1):14–19

    Article  PubMed  Google Scholar 

  26. Özkaya O, Egemen O, Barutca SA, Akan M (2013) Long-term clinical outcomes of fat grafting by low-pressure aspiration and slow centrifugation (Lopasce technique) for different indications. J Plast Surg Hand Surg 47(5):394–398

    Article  PubMed  Google Scholar 

  27. Alharbi Z, Opländer C, Almakadi S, Fritz A, Vogt M, Pallua N (2013) Conventional vs. micro-fat harvesting: How fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. J Plast Reconstr Aesthetic Surg 66:1271–1278

    Article  Google Scholar 

  28. Vyas KS, Vascones HC, Morrison S, Mogni B, Linton S, Hockensmith L, Kabir T, Zielins E, Najor A, Bakri K, Mardini S (2020) Fat Graft Enrichment Strategies: A Systematic Review. Plast Reconsr Surg 145(3):827–841

    Article  CAS  Google Scholar 

  29. Sinno S, Wilson S, Brownstone N, Le SM (2016) Current Thoughts on Fat Grafting: Using of Evidence to determine Fact of Fiction. Plast Reconstr Surg 137(3):818–824

    Article  CAS  PubMed  Google Scholar 

  30. Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Research and Therapy. https://doi.org/10.1186/s13287-017-0483-8

  31. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B (2015) The Current State of Fat Grafting: A Review of Harvesting, Processing and Injection Techniques. Plast Reconstr Surg. 136(4):897–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suszynski TM, Sieber DA, Beek AL, Cunningham BL (2015) Characterization of Adipose Tissue for Autologous Fat Grafting. Aesthet Surg J 35(2):194–203

    Article  PubMed  Google Scholar 

  33. Sommer B, Sattler G (2000) Current Concepts of Fat Graft Survival: Histology of Aspirated Adipose Tissue and Review of the Literature. Dermatol Surg 26:1159–1166

    Article  CAS  PubMed  Google Scholar 

  34. Von Heimburg D, Hemmrich K, Haydarlioglu S, Staiger H, Pallua N (2004) Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs 178(2):87–92

    Article  Google Scholar 

  35. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, Clarke M, Deveraux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic review and meta-analyses of studies that evaluate healthcar inreventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stawart L, PRISMA-P Group. (2015) Preferred reporting items for. Systematic review and meta-amalysis protocols (PRISMA-P) (2015) elaboration and explanation. BMJ 350:g7647. https://doi.org/10.1136//bmj.g7647

    Article  Google Scholar 

  38. Nguyen A, Pasyk KA, Bouvier TN, Hasset CA, Argenta LC (1990) Comparative Study of Survival of Autologous Adipose Tissue Taken and Transplanted by Different Techniques. Plast Reconstr Surg 85(3):378–386

    Article  CAS  PubMed  Google Scholar 

  39. Travnickova M, Pajorova J, Zarubova J, Krocilova N, Molitor M, Bacakova L (2020) The Influence of Negative Pressure and of the Harvesting Site on the Characteristics of Human Adipose Tissue-Derived Stromal Cells from Lipoaspirates. Stem Cells International. https://doi.org/10.1155/2020/1016231

  40. OCEBM Levels of Evidence Working Group. OCEBM Table of Evidence Working Group: Jeremy Howick, Iain Chalmers (James Lind Library), Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati, Ivan Moschetti, Bob Phillips, Hazel Thornton, Olive Goddard and Mary Hodgkinson. "The Oxford 2011 Levels of Evidence". Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=5653, accessed 5.7.2020.

  41. ASPS Evidence‐Based Clinical Practice Guideline Methodology, December 2016. https://www.plasticsurgery.org/documents/medical-professionals/quality-resources/ASPS-Evidence%E2%80%90Based-Clinical-Practice-Guideline-Methodology.pdf, accessed 5.7.2020

  42. Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG (2013) The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg 131:1125–1136

    Article  CAS  PubMed  Google Scholar 

  43. Kononas TC, Bucky LP, Hurley C, May JW (1993) The Fate of Suctioned and Surgically Removed Fat after Reimplantation for Sort-Tissue Augmentation: A Volumetric and Histologic Study in the Rabbit. Plast Reconstr Surg 91(5):763–768

    Article  CAS  PubMed  Google Scholar 

  44. Gonzales AM, Lobocki C, Kelly CP, Jackson IT (2007) An Alternative Method for Harvest and Processing Fat Grafts: An In Vitro Study of Cell Viability and Survival. Plast Reconstr Surg 120(1):285–294

    Article  CAS  Google Scholar 

  45. Noaves F, dos Reis N, Baroudi R (1998) Counting of Live Fat Cells Used in Lipoinjection Procedures. Aesth Plast Surg 22:12–15

    Article  Google Scholar 

  46. Shiffman MA, Mirrafati S (2001) Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 27:819–826

    CAS  PubMed  Google Scholar 

  47. Pu LLQ, Cui X, Fink BF, Cibull ML, Gao D (2005) The Viability of Fatty Tissues Within Adipose Aspirates After Conventional Liposuction. A Comprehensive Study. Annals Plast Surg 54(3):288–292

    CAS  Google Scholar 

  48. Smith P, Adams WP, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, Brown SA (2006) Autologous Human Fat Grafting: Effect of Harvesting and Preparation Techniques on Adipocyte Graft Survival. Plast Recostr Surg 117(6):1836–1844

    Article  CAS  Google Scholar 

  49. Tambasco D, Arena V, Grussu F, Cervelli D (2013) Adipocyte damage in relation to different pressures generated during manual lipoaspiration with syringe. Plast Reconstr Surg 131(4):645e–646e

    Article  CAS  PubMed  Google Scholar 

  50. Cheriyan T, Kao HK, Qiao X, Guo L (2014) Low harvest pressure enhances autologous fat graft viability. Plast Reconstr Surg 133(6):1365–1368

    Article  CAS  PubMed  Google Scholar 

  51. Cucchiani R, Corrales L (2016) The Effects of Fat Harvesting and Preparation, Air Exposure, Obesity and Stem Cell Enrichment on Adipocyte Viability Prior to Graft Transplantation. Aesth Surg J 36(10):1164–1173

    Article  Google Scholar 

  52. Leong DT, Hutmacher DW, Chew FT, Lim TC (2005) Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe- assisted liposuction. J Dermatol Sci 37:169–176

    Article  PubMed  Google Scholar 

  53. Mojallal A, Auxenfans C, Lequeux C, Braye F, Damour O (2008) Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction. Bio Med Mater Eng 18(4–5):193–197

    Article  CAS  Google Scholar 

  54. Keck M, Kober J, Riedl O, Kitzninger HB, Wolf S, Stulnig TM, Zayda M, Gugerell A (2014) Power assisted liposuction to obtain adipose- derived stem cells: impact on viability and differentiation to adipocytes in com- parison to manual aspiration J Plast Reconstr Aesthetic Surg 67(1):e1-8

    Google Scholar 

  55. Bony C, Cren M, Domergue S, Toupet K, Jorgensen C, Noel D (2016) Adipose mesenchymal stem cells isolated after manual or water-jet-assisted liposuction display similar properties, Front Immunol. https://doi.org/10.3389/fimmu.2015.00655

  56. Barzelay A, Levy R, Kohn E, Sella M, Shani N, Meilik B, Entin-Meer M, Gur E, Loewenstein A, Barak A (2015) Power-assisted liposuction versus tissue resection for the isolation of adipose tissue–derived mesenchymal stem cells: phenotype, senescence and multipotency at advanced passages. Aesthet Surg J 35(7): NP230–NP240

  57. Duscher D, Luan A, Rennert RC, Atashroo D, Maan ZN, Brett EA, Whittam AJ, Ho N, Lin M, Hu MS, Walmsley GG, Wenny R, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Guntner GC (2016) Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. J Transl Med 14(1):126–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen YW, Wang JR, Liao X, Li SH, Xiao LL, Cheng B, Xie GH, Song JX, Liu HW (2017) Effect of suction pressures on cell yield and functionality of the adipose-derived stromal vascular fraction. J Plast Reconstr Aesthet Surg

  59. Charles-de-Sá L, Gontijo de Amorim NF, Han DD, JV, Amable P, Teixeira MVT, Luiz de Ajauro P, Link W, Borojevich R, Rigotti G. (2015) Influence of negative pressure on the viability of adipocytes and mesenchymal stem cell, considering the device method used to harvest fat tissue. Aesthet Surg J 35(3):334–344

    Article  PubMed  Google Scholar 

  60. Neuber GA (1893) Fettransplantation. Verh Dtsch Ges Chir. 22:66–67

    Google Scholar 

  61. Billings E Jr, May JW Jr (1989) Historical review and present status of free fat graft auto transplantation in plastic and reconstructive surgery. Plast Reconstr Surg 83:368–381

    Article  PubMed  Google Scholar 

  62. Czerny A (1895) Plastischer Ersatz der Brustdrose durch ein Lipoma. Chir Kongr Verhandl 2:216

    Google Scholar 

  63. Brunning P (1919) Contribution à l’étude des greffes adipeuses. Bull Mem Acad R Med Belg 28:440–445

    Google Scholar 

  64. Illouz YG (1986) The fat cell “graft”: a new technique to fill depressions. Plast reconstr Surg 78:122–123

    Article  CAS  PubMed  Google Scholar 

  65. Chajchir A (1996) Fat injection: Long –term follow-up. Aesthet Plast Surg 20:291–296

    Article  CAS  Google Scholar 

  66. Coleman SR (2001) Structural fat grafts: the ideal filler? Clin Plast Surg 28:111–119

    Article  CAS  PubMed  Google Scholar 

  67. Coleman SR (2002) Hand rejuvenation with structural fat grafting. Plast Reconstr Surg. 110:1731–1744

    Article  PubMed  Google Scholar 

  68. Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19:421–425

    Article  CAS  PubMed  Google Scholar 

  69. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    Article  CAS  PubMed  Google Scholar 

  70. Kakagia D, Pallua N (2014) Autologous fat grafting: in search of the optimal technique. Surg Innov 21:327–336

    Article  PubMed  Google Scholar 

  71. Tuncel U, Kurt A, Gumus M, Ayodogdu O, Guzei N, Demir O (2017) Preliminary results with non-centrifuged autologous fat graft and percutaneous aponeurotomy for treating Dupuytren’s disease. Hand Surg Rehabil 36(5):350–354

    Article  CAS  PubMed  Google Scholar 

  72. Bank J, Fuller SM, Henry GI, Zachary LS (2014) Fat grafting to the hand in patients with Raynaud phenomenon. Plast Reconstr Surg 133(5):1109–1118

    Article  CAS  PubMed  Google Scholar 

  73. Khouri RK Jr, Khouri RK (2017) Current Clinical Applications of Fat Grafting. Plast Reconstr Surg 140(3):466e–486e

    Article  CAS  PubMed  Google Scholar 

  74. Bellini E, Grieco MP, Raposio E (2017) The science behind autologous fat grafting. Annals of Medicine and surgery. https://doi.org/10.1016/j.amsu.2017.11.001

  75. Walocko FM, Eber AE, Kirsner RS, Badiavas E, Nouri K (2018) Systematic review of the therapeutic roles of adipose tissue in dermatology. J Am Acad Dermatol 79(5):935–944

    Article  CAS  PubMed  Google Scholar 

  76. Peer LA (1956) The neglected free fat graft. Plast Reconstr Surg 18:233–232

    Article  CAS  Google Scholar 

  77. Tremolada C, Palmieri G, Ricordi C (2010) Adipocyte Transplantation and Stem Cells: Plastic Surgery Meets Regenerative Medicine. Cell Transplant 19:1217–1223

    Article  PubMed  Google Scholar 

  78. Neuhof H, Hirshfeld SD (1923) The Transplantation of Tissues. Appleton, New York

    Google Scholar 

  79. Peer LA (1950) Loss of weight and volume in human fat graft, with postulation of a cell survival theory. Plast Reconstr Surg 5:217–221

    Article  Google Scholar 

  80. Peer LA (1955) Cell survival theory versus replacement theory. Plast. Reconstr. Surg. 16:161–168

    Article  CAS  Google Scholar 

  81. Dong Z, Peng Z, Chang Q, Zhan W, Zeng Z, Zhang S, Lu F (2015) The angiogenic and adipogenic modes of adipose tissue after free fat grafting. Plast Reconstr Surg 135:556e–567e

    Article  CAS  PubMed  Google Scholar 

  82. Doornaert M, Colle J, De Maere E, Blondeel P (2018) Autologous fat grafting: latest insights. Ann Med Surg 37:47–53

    Article  Google Scholar 

  83. Hong KY, Yim S, Kim HJ, Jin US, Lim SA, Eo SR, Chang H, Minn KW (2018) The Fate of the Adipose-Derived Stromal Cells during Angiogenesis and Adipogenesis after Cell-Assisted Lipotransfer. Plast Reconstr Surg. 141(2):365–375

    Article  CAS  PubMed  Google Scholar 

  84. Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Youshmiura K. (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg. 129; 1081-1092.

  85. Kato H, Mineda K, Eto H, Doi K, Kuno S, Kihoshita K, Kanayama K, Yoshimura K. (2014) Degeneration, regeneration and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg. 133: 303e-313e

  86. Del Vecchio D, Rohrich RJ (2012) A classification of clinical fat grafting: different problems, different solutions. Plast Reconstr Surg 130:511–522

    Article  PubMed  CAS  Google Scholar 

  87. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose- derived stem cells. Dermatol Surg 34:1178–1185

    CAS  PubMed  Google Scholar 

  88. Mashiko T, Yoshimura K (2015) How does fat survive and remodel after grafting? Clin Plast Surg 42(02):181–190

    Article  PubMed  Google Scholar 

  89. Shih L, Davis MJ, Winocour SJ (2020) The Science of Fat Grafting. Semin Plast Surg 34:5–10

    Article  PubMed  PubMed Central  Google Scholar 

  90. Herold C, Utz P, Pflaum M, Wilhelmi M, Vogt PM (2012) Negative pressure of manual liposuction with Coleman technique is highly dependent on the position of plunger of the syringe. J Plast Reconstr Aesthet Surg 65(7):983–984

    Article  CAS  PubMed  Google Scholar 

  91. Elam MW, Packer D, Schwab J. (1997) Reduced Negative Pressure Liposuction (RNPL). Could Less Be More? Int J Aesth Restor Surg. 5(2): 101-104

Download references

Funding

This study was supported by the Ministry of Health of the Czech Republic (grant No. NU20-08-00208)—authors 1, 2, 5, 6, (including personal fee), and by the Ministry of Education, Youth and Sports of the Czech Republic within LQ1604 National Sustainability Program II (Project BIOCEV-FAR)—authors 2 (including personal fee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Molitor.

Ethics declarations

Conflict of interest

All authors declare that they have not conflicts of interest. Financial funding of research has not any influence on the results of the research in any form.

Human or Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed content is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molitor, M., Trávníčková, M., Měšťák, O. et al. The Influence of High and Low Negative Pressure Liposuction and Various Harvesting Techniques on the Viability and Function of Harvested Cells—a Systematic Review of Animal and Human Studies. Aesth Plast Surg 45, 2379–2394 (2021). https://doi.org/10.1007/s00266-021-02249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-021-02249-9

Keywords

Navigation