Skip to main content
Log in

On the high friction limit for the complete Euler system

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We show that solutions of the complete Euler system of gas dynamics perturbed by a friction term converge to a solution of the porous medium equation in the high friction/long time limit. The result holds in the largest possible class of generalized solutions–the measure–valued solutions of the Euler system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. D. Breit, E. Feireisl, and M. Hofmanová. Dissipative solutions and semiflow selection for the complete Euler system. Comm. Math. Phys., 376(2):1471–1497, 2020.

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Březina and E. Feireisl. Measure-valued solutions to the complete Euler system revisited. Z. Angew. Math. Phys., 69(3):69-57, 2018.

    Article  MathSciNet  Google Scholar 

  3. J. Březina and E. Feireisl. Measure-valued solutions to the complete Euler system. J. Math. Soc. Japan, 70(4):1227–1245, 2018.

    Article  MathSciNet  Google Scholar 

  4. J. A. Carrillo, T. Dȩbiec, P. Gwiazda, A. Świerczewska-Gwiazda. Dissipative measure-valued solutions to the Euler-Poisson equation. SIAM J. Math. Anal., 56(1): 304–335, 2024

  5. G.-Q. Chen and H. Frid. Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations. Trans. Amer. Math. Soc., 353(3):1103–1117 (electronic), 2001.

  6. C. M. Dafermos and R. Pan. Global \(BV\) solutions for the \(p\)-system with frictional damping. SIAM J. Math. Anal., 41(3):1190–1205, 2009.

    Article  MathSciNet  Google Scholar 

  7. E. Feireisl and M. Hofmanová. Randomness in compressible fluid flows past an obstacle. Journal of Statistical Physics, 186:32–, 2022.

  8. E. Feireisl, C. Klingenberg, O. Kreml, and S. Markfelder. On oscillatory solutions to the complete Euler system. J. Differential Equations, 269(2):1521–1543, 2020.

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Feireisl, M. Lukáčová-Medviďová, H. Mizerová, and B. She. Numerical analysis of compressible fluid flows. Springer-Verlag, Cham, 2022.

    Google Scholar 

  10. P. Gwiazda, O. Kreml, A. Świerczewska-Gwiazda Dissipative measure-valued solutions for general conservation laws Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(3): 683–707, 2020

  11. D. Kröner and W. M. Zajaczkowski. Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids. Math. Methods Appl. Sci., 19(3):235–252, 1996.

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Lattanzio and A. E. Tzavaras. Relative entropy in diffusive relaxation. SIAM J. Math. Anal., 45(3):1563–1584, 2013.

    Article  MathSciNet  Google Scholar 

  13. C. Lattanzio and A. E. Tzavaras. From gas dynamics with large friction to gradient flows describing diffusion theories. Comm. Partial Differential Equations, 42(2):261–290, 2017.

    Article  MathSciNet  Google Scholar 

  14. P. Marcati and A. Milani. The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differential Equations, 84(1):129–147, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  15. T. C. Sideris, B. Thomases, and D. Wang. Long time behavior of solutions to the 3D compressible Euler equations with damping. Comm. Partial Differential Equations, 28(3-4):795–816, 2003.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Świerczewska-Gwiazda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Feireisl: The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement 21–02411S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840. This work was partially supported by the Thematic Research Programme, University of Warsaw, Excellence Initiative Research University.

Y.–S. Kwon: The work of Y.–S. Kwon was partially supported by the National Research Foundation of Korea (NRF2022R1F1A1073801).

A. Świerczewska-Gwiazda: The work of A. Ś-G. and P.G. was partially supported by National Science Centre (Poland), agreement no 2021/43/B/ST1/02851.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Gwiazda, P., Kwon, YS. et al. On the high friction limit for the complete Euler system. J. Evol. Equ. 24, 25 (2024). https://doi.org/10.1007/s00028-024-00956-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00956-9

Keywords

Navigation