Skip to main content
Log in

Littoral periphyton dynamics in newly established post-mining lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 February 2023

This article has been updated

Abstract

Hydric recultivation—flooding of abandoned mining pits—creates a completely new, underexplored habitat for a wide range of aquatic organisms. Periphyton, dominated by algae and cyanobacteria, is frequently a key component of newly established aquatic ecosystems. Periphyton and its response to abiotic factors were studied in the littoral zone of three post-mining lakes with different ages of foundation situated in the Czech Republic. The microbial diversity of phototrophs as a major component of periphyton is largely unknown in such localities. The studied habitat proved to harbour a huge periphytic diversity—25% of diatom species found in the respective watershed (~ 5500 km2) inhabited exlusively the studied lakes. Species composition of phototrophic microorganisms varied significantly (Permutational Multivariate Analysis of Variance) among the studied lakes, seasons, and sampling years. However, the sampling depths and sampling site of the studied lake have not shown a significant impact on the diversity, indicating the homogeneous composition of the littoral periphyton within a particular lake and growing season. The seasonal dynamics of periphyton were unique for each lake, documenting three distinct successional patterns. The proportion of diatoms in the periphytic community decreases with the higher trophic state and flooding age of the post-mining lakes. Cyanobacteria and mobile diatom forms prevailed later in the growing season, suggesting that they could utilise nutrients released from the accumulated periphyton biomass. Calcium ions were one of the best correlates of species data among other abiotic variables tested, offering the intriguing question of the role of calcium in the formation of periphytic mats for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated and analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Admiraal V, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42:30–40

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. Petrov BN, Csáki F, editors. In: 2nd international symposium on information theory, Budapest, Hungary. Akadémia Kiadó. p 267–281

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. PNAS USA 106(40):17071–17076. https://doi.org/10.1073/pnas.0905512106

    Article  Google Scholar 

  • Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM (2005) Periphyton: ecology, exploitation, and management. CAB International, Wallingford

    Book  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81. https://doi.org/10.1038/nrmicro1556

    Article  CAS  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263. https://doi.org/10.1038/nrmicro.2016.15

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300

    Google Scholar 

  • Bennion HA (1994) Diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275:391–410. https://doi.org/10.1007/978-94-017-2460-9_35

    Article  Google Scholar 

  • Blinn DW (1993) Diatom community structure along physicochemical gradients in saline lakes. Ecology 74(4):1246–1263. https://doi.org/10.2307/1940494

    Article  Google Scholar 

  • Blum JL (1982) Colonisation and growth of attached algae at the Lake Michigan water line. J Great Lakes Res 8:10–15. https://doi.org/10.1016/S0380-1330(82)71936-7

    Article  Google Scholar 

  • Borchardt MA (1996) Nutrients. In: Stevenson RJ, Bothwell MI, Lowe RL (eds) Algal ecology-freshwater benthic ecosystems. Academic Press, San Diego (CA), pp 183–227

    Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology. McGraw-Hill, New York, p 439

    Google Scholar 

  • Brothers S, Vadeboncoeur Y, Sibleu P (2016) Benthic algae compensate for phytoplankton losses in large aquatic ecosystems. Glob Change Biol 22(12):3865–3873. https://doi.org/10.1111/gcb.13306

    Article  Google Scholar 

  • Bylak A, Rak W, Wójcik M, Kukuła E, Kukuła K (2019) Analysis of macrobenthic communities in a post-mining sulphur pit lake (Poland). Mine Water Environ 38:536–550. https://doi.org/10.1007/s10230-019-00624-2)

    Article  CAS  Google Scholar 

  • Cantonati M, Lowe RL (2014) Lake benthic algae: toward an understanding of their ecology. Freshw Sci 33:475–486. https://doi.org/10.1086/676140

    Article  Google Scholar 

  • Cantonati M, Scola S, Angeli N, Guella G, Frassanito R (2009) Environmental controls of epilithic diatom depth-distribution in an oligotrophic lake characterised by marked water-level fluctuations. Eur J Phycol 44(1):15–29. https://doi.org/10.1080/09670260802079335

    Article  Google Scholar 

  • Carlton RG, Wetzel RG (1988) Phosphorus flux from lake sediments: effect of epipelic algal oxygen production. Limnol Oceanogr 33(4):562–570. https://doi.org/10.4319/lo.1988.33.4.0562

    Article  CAS  Google Scholar 

  • Cattaneo A (1987) Periphyton in lakes of different trophy. Can J Fish Aquat 44:296–303. https://doi.org/10.1139/f87-038

    Article  Google Scholar 

  • Cattaneo A, Amireault MC (1992) How artificial are artificial substrata for periphyton? J N Am Benthol Soc 11(2):244–256

    Article  Google Scholar 

  • Corman JR, Moody EK, Elser JJ (2016) Calcium carbonate deposition drives nutrient cycling in a calcareous headwater stream. Ecol Monogr 86:448–461. https://doi.org/10.1002/ecm.1229

    Article  Google Scholar 

  • Costanza R, d’Arge R, deGroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

    Article  CAS  Google Scholar 

  • Costanza R, Kubiszewski I, Ervin D, Bluffstone R, Boyd J, Brown D, Chang H, Dujon V, Granek EF, Polasky S, Shandas V, Yeakley A, Boyd J (2011) Valuing ecological systems and services. F1000 Biol Rep 3:14. https://doi.org/10.3410/B3-14

    Article  Google Scholar 

  • Darley WM (1982) Algal biology: a physiological approach. Blackwell, Oxford, p 240

    Google Scholar 

  • Deneke R (2000) Review on rotifers and crustaceans in highly acidic environments of pH-values = 3. Hydrobiologia 433:167–172

    Article  Google Scholar 

  • DeNicola DM, Kelly MG (2014) Role of periphyton in ecological assessment of lakes. Freshw Sci 33:619–638. https://doi.org/10.1086/676117

    Article  Google Scholar 

  • DeNicola DM, Lellock AJ (2015) Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient. J Phycol 51(4):739–749. https://doi.org/10.1111/jpy.12315

    Article  CAS  Google Scholar 

  • DeNicola DM, de Eyto E, Wemaere A, Irvine K (2006) Periphyton response to nutrient addition in 3 lakes of different benthic productivity. J N Am Benthol Soc 25(3):616–631. https://doi.org/10.1899/0887-3593

    Article  Google Scholar 

  • Doods V (2003) The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol 39(5):840–849. https://doi.org/10.1046/j.1529-8817.2003.02081.x

    Article  Google Scholar 

  • Dudley JL, Arthurs W, Hall TJ (2001) A comparison of methods used to estimate river rock surface areas. J Freshw Ecol 16(2):257–261. https://doi.org/10.1080/02705060.2001.9663810

    Article  Google Scholar 

  • EC (European Community) (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal European Union - Community L327/1.

  • Ettl H, Gärtner G (1988) Chlorophyta II—Tetrasporales, Chlorococcales, Gloeodendrales (Süßwasserflora von Mitteleuropa Band 10). Gustav Fischer Verlag, Jena, p 436

    Google Scholar 

  • Ettl H, Gärtner G (2013) Syllabus der Boden-Luft-und Flechtenalgen. Springer, Berlin, Heidelberg, 773 p

    Book  Google Scholar 

  • Fierer N, Nemergut D, Knight R, Craine JM (2010) Changes through time: integrating microorganisms into the study of succession. Res Microbiol 161(8):635–642. https://doi.org/10.1016/j.resmic.2010.06.002

    Article  Google Scholar 

  • Fisher J, James C, Moss B (2006) What determines the diatom communities of submerged freshwater plants? Implications for the use of community indices in determining ecological quality. Nova Hedwigia 130:51–72

    Google Scholar 

  • Fott B (1954) Pleurax, synthetická pryskyřice pro preparaci rozsivek. [Pleurax, synthetic resin for the diatoms preparation]. Preslia 26:193–194

    Google Scholar 

  • Gaiser EE, McCormick P, Hagerthey SE (2011) Landscape patterns of periphyton in the Florida Everglades. Crit Rev Environ Sci Technol 41(S1):92–120. https://doi.org/10.1080/10643389.2010.531192

    Article  Google Scholar 

  • Gammons CH, Harris LN, Castro JM, Cott PA, Hanna BW (2009) Creating lakes from open pit mines: processes and considerations—with emphasis on northern environments. Can Tech Rep Fish Aquat Sci 2826:ix + 106

    Google Scholar 

  • Goral F, Schellenberg J (2017) Goeveg: functions for community data and ordinations. 18p. http://www.github.com/fgoral/goeveg Accessed 20 Jan 2020

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 06 Apr 2021

  • Hindák F (ed) (1978) Sľadkovodné riasy. SPN, Bratislava

    Google Scholar 

  • Hindák F (1996) Klúč na určovanie nerozkonárených vláknitých zelených rias (Ulotrichineae, Ulotrichales, Chlorophyceae). [Key for determination of filamentous green algae (Ulotrichineae, Ulotrichales, Chlorophyceae)]. Bulletin Slovenskej botanickej spoločnosti pri SAV, Bratislava, p 77

    Google Scholar 

  • Hooke R, Martin-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22(12):4. https://doi.org/10.1130/GSAT151A.1

    Article  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 6 (2):65–70.

  • Houk V (2003) Atlas of freshwater centric diatoms with a brief key and descriptions—Part 1 Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Czech phycology supplement 1. Czech Phycological Society, Olomouc, p 27

    Google Scholar 

  • ISO 10260 (1992) Water quality-Measurement of biochemical parameters-Spectrometric determination of the chlorophyll-a concentration, Geneva, Switzerland

  • ISO 9963-1 (1994) Water quality-Determination of alkalinity-Part 1: Determination of total and composite alkalinity,Geneva, Switzerland

  • ISO 15682 (2000) Water quality-Determination of chloride by flow analysis (CFA and FIA) and photometric or potentiometric detection, Geneva, Switzerland

  • ISO 11885 (2007) Water quality-Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES), Geneva, Switzerland

  • Johnson AC, Castenholz RW (2000) Preliminary observations of the benthic cyanobacteria of waldo lake and their potential contribution to lake productivity. Lake Reserv Manag 16(1–2):85–90. https://doi.org/10.1080/07438140009354225

    Article  CAS  Google Scholar 

  • Johnson RE, Tuchman NC, Peterson CG (1997) Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J N Am Benthol Soc 16:503–519

    Article  Google Scholar 

  • Kaštovský J, Hauer T, Geriš R, Chattová B, Juráň J, Lepšová-Skácelová O, Pitelková P, Pusztai M, Škaloud P, Šťastný J, Čapková K, Bohunická M, Mühlsteinová R (2018a) Atlas sinic a řas ČR 1. [Atlas of cyanobateria and algae of the Czech Republic 1.]. University of South Bohemia in České Budějovice, Praha, p 383

    Google Scholar 

  • Kaštovský J, Hauer T, Geriš R, Chattová B, Juráň J, Lepšová-Skácelová O, Pitelková P, Pusztai M, Škaloud P, Šťastný J, Čapková K, Bohunická M, Mühlsteinová R (2018b) Atlas sinic a řas ČR 2. [Atlas of cyanobateria and algae of the Czech Republic 2.]. University of South Bohemia in České Budějovice, Praha, p 480

    Google Scholar 

  • Kazamia E, Czesnick H, Van Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulationemi. Environ Microbiol 14(6):1466–1476. https://doi.org/10.1111/j.1462-2920.2012.02733.x

    Article  CAS  Google Scholar 

  • Koedooder C, Stock W, Willems A, Mangelinckx S, De Troch M, Vyverman W, Sabbe K (2019) Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol 10:1255. https://doi.org/10.3389/fmicb.2019.01255

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota—3. Teil/3rd part: heterocytous genera. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süswasserflora von Mitteleuropa (freshwater Flora of central Europe) 19/3. Springer Spektrum Berlin, Heidelberg, p 1130

    Google Scholar 

  • Komárek J, Fott B (1983) Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süßwassers, Die Binnengewässer 16, 7/1. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 1044p

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1.Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, p 548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota-2. Teil/2nd Part: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, p 759

    Google Scholar 

  • Konopáčová E, Nedoma J, Čapková K, Čapek P, Znachor P, Pouzar M, Říha M, Řeháková K (2021) Low specific phosphorus uptake affinity of epilithon in three oligo- to mesotrophic post-mining lakes. Front Microbiol 12:735498. https://doi.org/10.3389/fmicb.2021.735498

    Article  Google Scholar 

  • Kopáček J, Veselý J, Stuchlík E (2001) Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the industrial revolution (1850–2000). Hydrol Earth Syst Sci 5:391–405. https://doi.org/10.5194/hess-5-391-2001

    Article  Google Scholar 

  • Krammer K (2000) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. The genus pinnularia, vol 1. A.R.G. Gantner Verlag K.G., Ruggell, p 703

    Google Scholar 

  • Krammer K (2002) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Cymbella, vol 3. A.R.G. Gantner Verlag K.G., Ruggell, p 584

    Google Scholar 

  • Krammer K (2003) Diatoms of Europe. diatoms of the european inland waters and comparable habitats. cymbopleura, delicata, navicymbula, gomphocymbellopsis, afrocymbella, vol 4. A.R.G. Gantner Verlag K.G., Ruggell, p 529

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaurer D (eds) Süsswasserflora von Mitteleuropa, Band 2/1. VEB G. Fischer, Jena, p 876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. teil: bacillariaceae, epithemiaceae, surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaurer D (eds) Susswasserflora von Mitteleuropa, Band 2/2. Gustav Fisher Verlag, Jena, p 610

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. teil: centrales, fragilariaceae, eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaurer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. VEB G. Fischer, Jena, p 598

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. teil: achnanthaceae, kritische ergänzungen zu navicula (lineolatae) und gomphonema gesamtliteraturverzeichnis teil 1–4. In: Ettl H, Gerloff J, Heynig H, Mollenhaurer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. VEB G. Fischer, Jena, p 468

    Google Scholar 

  • Lange-Bertalot H (2001) Diatoms of Europe. Diatoms of European inland waters and comparable habitats. Navicula sensu stricto, 10 Genera Separated from Navicula sensu lato, Frustulia, vol 2. A.R.G. Gantner Verlag K.G., Ruggell, p 526

    Google Scholar 

  • Larondelle L, Haase D (2012) Valuing post – mining landscapes using an ecosystem services approach—an example from Germany. Ecol Indic 18:567–574. https://doi.org/10.1016/j.ecolind.2012.01.008

    Article  Google Scholar 

  • Lecointe C, Coste M, Prygiel J (1993) “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269–270(1):509–513. https://doi.org/10.1007/BF00028048

    Article  Google Scholar 

  • Lessmann D, Nixdorf B (2000) Acidification control of phytoplankton diversity, spatial distribution and trophy in mining lakes. Verhandlungen Des Internationalen Verein Limnologie 27:2208–2211

    CAS  Google Scholar 

  • Lessmann D, Nixdorf B (2002) Seasonal succession of phytoplankton in acidic mining lakes. Verh Des Int Ver Limnol 28:1597–1601

    CAS  Google Scholar 

  • Li M, Liu J, Tonkin JD, Shen J, Xia N, Wang J (2020) The effects of abiotic and biotic factors on taxonomic and phylogenetic diversity of stream epilithic bacteria around Qiandao Lake. Aquat Sci 82:71. https://doi.org/10.1007/s00027-020-00746-8

    Article  Google Scholar 

  • López D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. PNAS USA 06(1):280–285. https://doi.org/10.1073/pnas.0810940106

    Article  Google Scholar 

  • López D, Gontang E, Kolter R (2010) Potassium sensing histidine kinase in Bacillus subtilis. Meth Enzymol 471:229–251. https://doi.org/10.1016/S0076-6879(10)71013-2

    Article  CAS  Google Scholar 

  • Lowe RL (1996) Periphyton patterns in lakes. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, pp 57–76

    Chapter  Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1989) Water analysis: some revised methods for limnologists, 2nd edn. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Mahdy A, Hilt S, Filiz N, Beklioglu M, Hejzlar J, Ozkundakci D, Papastergiadou E, Scharfenberger U, Schorf M, Stefanidis K, Tuvikene L, Zingel P, Søndergaard M, Jeppesen E, Adrian R (2015) Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment. Aquat Sci 77:499–510. https://doi.org/10.1007/s00027-015-0394-7

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nixdorf B, Mischke U, Lessmann D (1998a) Chrysophytes and chlamydomonas: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369/370:315–327

    Article  CAS  Google Scholar 

  • Nixdorf B, Wollmann K, Deneke K (1998b) Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In: Geller W, Klapper H, Solomons W (eds) Acid mining lakes. Springer-Verlag, Berlin, pp 147–167

    Chapter  Google Scholar 

  • Oberholster PJ, Schoeman Y, Truter JC, Botha A-M (2022) Using periphyton assemblage and water quality variables to assess the ecological recovery of an ecologically engineered wetland affected by acid mine drainage after a dry spell. Processes 10:877. https://doi.org/10.3390/pr10050877

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Wagner H (2019) Vegan: community ecology package. R package version 2.5–6. https://www.CRAN.R-project.org/package=vegan Accessed 17 Jan 2020

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. https://doi.org/10.1890/0012-9658(2006)87[

    Article  Google Scholar 

  • Pessi IS, Lara Y, Durieu B, Maalouf PC, Verleyen E, Wilmotte A (2018) Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol 94:1–13. https://doi.org/10.1093/femsec/fiy042

    Article  CAS  Google Scholar 

  • Pringle CM (1987) Effects of water and substratum nutrient supplies on lotic periphyton growth: an integrated bioassay. Can J Fish Aquat 44(3):619–629. https://doi.org/10.1139/f87-075

    Article  CAS  Google Scholar 

  • Procházková L (1959) Bestimmung der Nitrate Im Wasser Fresenius Fresenius Z Ana. Chem 167:254–260

    Google Scholar 

  • Pšererová Z (2004) Vliv rekultivačních postupů na složení řasové flory. [Influence of reclamation procedures on the composition of algal flora] (PhD thesis), University of South Bohemia, p 68

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Accessed on 9 Jan 2020

  • Reavie D, Axler RP, Sgro GV, Danz NP, Kingston JC, Kireta AR, Brown TN, Hollenhorst TP, Ferguson MJ (2006) Diatom-based weighted-averaging transfer functions for great lakes coastal water quality: relationships to watershed characteristics. J Great Lakes Res 32(2):321–347. https://doi.org/10.3394/0380-1330(2006)32[321:DWTFFG]2.0.CO;2

    Article  CAS  Google Scholar 

  • Řeháková K, Čapková K, Dvorský M, Kopecký M, Altman J, Šmilauer P, Doležal J (2017) Interactions between soil phototrophs and vascular plants in Himalayan cold desert. Soil Biol Biochem 115:568–578. https://doi.org/10.1016/j.soilbio.2017.05.020

    Article  CAS  Google Scholar 

  • Ribeiro L, Brotas V, Rincé Y, Jesus B (2013) Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. J Phycol 49:258–270. https://doi.org/10.1111/jpy.12031

    Article  Google Scholar 

  • Říhová-Ambrožová J, Ivanovová P (2013) Hydrická rekultivace na Mostecku. První výsledky hydrobiologického průzkumu hydricky rekultivovaného Mostecka [Hydric recultivation of most area. First results of hydrobiological research]. Vodní Hospodářství 63(4):33–37

    Google Scholar 

  • Rosén P, Hall R, Korsman T, Renberg I (2000) Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J Paleolimnol 24:109–123

    Article  Google Scholar 

  • Rott E, Hofmann G, Pall K, Pfister P, Pipp E (1997) Indikationslisten für Aufwuchsalgen Teil 1: Saprobielle indikation. Bundesministerium für Land- und Forstwirtschaft, Wien, p 73

    Google Scholar 

  • Rott E, Pipp E, Pfister P, Dam HV, Orther K, Binder N, Pall K (1999) Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirtschaft, Wien, p 248

    Google Scholar 

  • Rychtecký P, Řeháková K, Kozlíková E, Vrba J (2015) Light availability may control extracellular phosphatase production in turbid environments. Microbial Ecol 69:37–44. https://doi.org/10.1007/s00248-014-0483-5

    Article  CAS  Google Scholar 

  • Sabater S, Guasch H, Romani AM, Munoz I (2002) The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469:149–156. https://doi.org/10.1023/A:1015549404082

    Article  CAS  Google Scholar 

  • Salazar G (2020) EcolUtils: utilities for community ecology analysis. R package version 0.1. https://www.github.com/GuillemSalazar/EcolUtils Acessed on 17 Jan 2020

  • Schroeter L, Gläβer C (2011) Analyses and monitoring of lignite mining lakes in Eastern Germany with spectral signatures of Landsat TM satellite data. Int J Coal Geol 86(1):27–39. https://doi.org/10.1016/j.coal.2011.01.005

    Article  CAS  Google Scholar 

  • Schultze M, Geller W, Wendt-Potthoff K, Benthaus FC (2009) Management of water quality in German pit lakes. Proceedings, securing the future and 8th ICARD, Skellefteå, Sweden. p 15

  • Scinto LJ, Reddy KR (2003) Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat Bot 77:203–222. https://doi.org/10.1016/S0304-3770(03)00106-2

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1964) Mathematical theory of communication. The University of Illinois Press, Urbana, p 144

    Google Scholar 

  • Sienkiewicz E, Gasiorowski M, Hamerlík L, Bitušík P, Stańczak J (2021) A new diatom training set for the reconstruction of past water pH in the Tatra Mountain lakes. J Paleolimnol 65:445–459. https://doi.org/10.1007/s10933-021-00182-0

    Article  Google Scholar 

  • Skácelová O (2006) Osídlení nově vzniklých biotopů na výsypce Sokolovského uhelného revíru sinicemi a řasami [Cyanobaterial and algal settlement of the new biotopes of the Sokolov coal hopper]. Zprávy České Botanické Společnosti 41, Materiály 21:141–150

    Google Scholar 

  • Skácelová O (2008) Diatoms inhabiting young successional biotopes in a district of surface coal-mining in Western Bohemia. Processing Central European Diatom Meeting (CEDIATOM2). Trentino Nature and Science Museum, Trento, p 26

    Google Scholar 

  • Soininen J, Tupola V, Voutilainen I, Cantonati M, Teittinen A (2021) Diatom biogeography in freshwaters—new insights from between-region comparisons and the role of unmeasured environmental factors. Diatom Res. https://doi.org/10.1080/0269249X.2021.1999859

    Article  Google Scholar 

  • Søndergaard M, Lauridsen T, Johansson L, Jeppesen E (2017) Gravel pit lakes in Denmark: chemical and biological state. Sci Total Environ 612:9–17. https://doi.org/10.1016/j.scitotenv.2017.08.163

    Article  CAS  Google Scholar 

  • Steinberg CEW, Schafer H, Beisker W, Bruggemann R (1998) Deriving restoration goals for acidified lakes from taxonomic phytoplankton studies. Restorat Ecol 6:327–335

    Article  Google Scholar 

  • Stevenson RJ, Bothwell ML, Lowe RL (1996) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, p 788

    Google Scholar 

  • Thornton D, Dong L, Underwood G, Nedwell D (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat Microb Ecol 27(3):285–300. https://doi.org/10.3354/ame027285

    Article  Google Scholar 

  • Tichá A, Bešta T, Vondrák D, Houfková P, Jankovská V (2019) Nutrient availability affected shallow-lake ecosystem response along the Late-Glacial/Holocene transition. Hydrobiologia 846(1):1–22. https://doi.org/10.1007/s10750-019-04054-7

    Article  CAS  Google Scholar 

  • Torrecilla I, Leganes F, Bonilla I, Fernandez-Pinas F (2004) A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp PCC712. Microbiology 150:3731–3739. https://doi.org/10.1099/mic.0.27403-0

    Article  CAS  Google Scholar 

  • US EPA Method 375.4 (1983) Methods for the chemical analysis of water and wastes (MCAWW) (EPA/600/4–79/020)

  • Vander Zanden JM, Chandra S, Park S, Vadeboncoeur Y, Goldman CR (2006) Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Can J Fish Aquat Sci 63:2608–2620. https://doi.org/10.1139/f06-148

    Article  Google Scholar 

  • Vanelslander B, De Wever A, Van Oostende N, Kaewnuratchadasorn P, Vanormelingen P, Hendrickx F, Sabbe K, Vyverman V (2009) Complementarity effects drive positive diversity effects on biomass production in experimental benthic diatom biofilms. J Ecol 97:1075–1082. https://doi.org/10.1111/j.1365-2745.2009.01535.x

    Article  Google Scholar 

  • Vymazal J, Richardsons CJ (1995) Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J Phycol 31(3):343–354. https://doi.org/10.1111/j.0022-3646.1995.00343.x

    Article  Google Scholar 

  • Waditee R, Hossain GS, Tanaka Y, Nakamura T, Shikata M, Takano J, Takabe T, Takabe T (2004) Isolation and functional characterisation of Ca2+/H+ antiporters from cyanobacteria. J Biol Chem 279(6):4330–4338. https://doi.org/10.1074/jbc.M310282200

    Article  CAS  Google Scholar 

  • Warth AD (1978) Molecular structure of the bacterial spore. Adv Microb Physiol 17:1–45. https://doi.org/10.1016/S0065-2911(08)60056-9

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego, p 1024

    Google Scholar 

  • Wherten M, Lundgren T (2001) Intracellular Ca2+ mobilisation and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. J Biol Chem 276:6468–6472. https://doi.org/10.1074/jbc.M009223200

    Article  Google Scholar 

  • Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wollmann K, Deneke R, Nixdorf B, Packroff G (2000) Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4). Hydrobiologia 433:3–14

    Article  CAS  Google Scholar 

  • Wyatt KH, Seballos RC, Shoemaker MN, Brown SP, Chandra S, Kuehn KA, Rober AR, Sadro S (2019) Resource constraints highlight complex microbial interactions during lake biofilm development. J Ecol 107(6):2737–2746. https://doi.org/10.1111/1365-2745.13223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Science Foundation (GACR 19-05791S), RVO 67985939 and by the CAS within the program of the Strategy AV 21, Land save and recovery. We thank our technician Martina Kaňová for her laboratory work. The project would not be possible without tight cooperation with companies Palivový Kombinát Ústí s.p. and Sokolovská Uhelná, who provided the boat and chemical data for our project and also Povodí Ohře, state enterprise for providing of diatom data and hydrochemical data

Author information

Authors and Affiliations

Authors

Contributions

TB, KR and KČ designed the study. TB, KR, JM, LS, EK, MR and AK collected the data. TB analysed the data. EJ provided diatom data from WFD monitoring of the river Ohře watershed. All authors made substantial contributions to the manuscript.

Corresponding author

Correspondence to Tomáš Bešta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bešta, T., Mareš, J., Čapková, K. et al. Littoral periphyton dynamics in newly established post-mining lakes. Aquat Sci 85, 21 (2023). https://doi.org/10.1007/s00027-022-00914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-022-00914-y

Keywords

Navigation