Skip to main content
Log in

Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the two-dimensional Dirac operator with Lorentz-scalar \(\delta \)-shell interactions on each edge of a star graph. An orthogonal decomposition is performed which shows such an operator is unitarily equivalent to an orthogonal sum of half-line Dirac operators with off-diagonal Coulomb potentials. This decomposition reduces the computation of the deficiency indices to determining the number of eigenvalues of a one-dimensional spin–orbit operator in the interval \((-1/2,1/2)\). If the number of edges of the star graph is two or three, these deficiency indices can then be analytically determined for a range of parameters. For higher numbers of edges, it is possible to numerically calculate the deficiency indices. Among others, examples are given where the strength of the Lorentz-scalar interactions directly change the deficiency indices, while other parameters are all fixed and where the deficiency indices are (2, 2), neither of which have been observed in the literature to the best knowledge of the authors. For those Dirac operators which are not already self-adjoint and do not have 0 in the spectrum of the associated spin–orbit operator, the distinguished self-adjoint extension is also characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arrizabalaga, N., Mas, A., Vega, L.: Shell interactions for Dirac operators. J. Math. Pures Appl. 102, 617–639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrizabalaga, N., Mas, A., Vega, L.: An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators. Commun. Math. Phys. 344, 483–505 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Arrizabalaga, N., Mas, A., Vega, L.: Shell interactions for Dirac operators: on the point spectrum and the confinement. SIAM J. Math. Anal. 47, 1044–1069 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: On the spectral properties of Dirac operators with electrostatic $\delta $-shell interactions. J. Math. Pures Appl. 111, 47–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: On Dirac operators in ${\mathbb{R}}^3$ with electrostatic and Lorentz scalar $\delta $-shell interactions. Quantum Stud. Math. Found. 6, 295–314 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Behrndt, J., Holzmann, M., Ourmières-Bonafos, T., Pankrashkin, K.: Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal. 279, 108700 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benguria, R., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincaré 18, 1371–1383 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Benguria, R., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Anal. Geom. 20, 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birman, M.S., Skvortsov, G.E.: On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 12–21 (1962)

    Google Scholar 

  10. Bruneau, L., Dereziński, J., Georgescu, V.: Homogenous Schrödinger Operators on Half-Line. Ann. Henri Poincaré 112, 547–590 (2011)

    Article  ADS  MATH  Google Scholar 

  11. Cassano, B., Lotoreichik, V.: Self-adjoint extensions of the two-valley Dirac operator with discontinuous infinite mass boundary conditions. Oper. Matrices 14, 667–678 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cassano, B., Lotoreichik, V., Mas, A., Tušek, M.: General $\delta $-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation. arXiv:2102.09988

  13. Cassano, B., Pizzichillo, F.: Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials. Lett. Math. Phys. 108, 2635–2667 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions, Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  15. Demengel, F., Demengel, G.: Function Spaces. Usage for the Solution of Partial Differential Equations. EDP Sciences, Les Ulis. CNRS Editions, Paris (2007)

  16. Derezinski, J., Ruba, B.: Holomorphic family of Dirac-Coulomb Hamiltonians in arbitrary dimension. arXiv:2107.03785

  17. Dittrich, J., Exner, P., Šeba, P.: Dirac operators with a spherically symmetric $\delta $-shell interaction. J. Math. Phys. 30, 2875–2882

  18. Derkach, V., Malamud, M.: Weyl function of a Hermitian operator and its connection with characteristic function. arXiv:1503.08956

  19. Edmunds, D., Evans, W.: Elliptic Differential Operators and Spectral Analysis. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  20. Exner, P.: Momemtum operators on graphs. In: Holden, H., Simon, B., Teschl, G. (eds.) Spectral Analysis, Differential Equations in Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday. Proceedings of Symposia in Pure Mathematics, vol. 87, pp 105–118. AMS, Providence (2012)

  21. Gesztesy, F., Šeba, P.: New analytically solvable models of relativistic point interactions. Lett. Math. Phys. 13, 345–358 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pittman Publishing Inc., Marshfield (1985)

    MATH  Google Scholar 

  23. Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)

    MATH  Google Scholar 

  24. Holzmann, M., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators with Lorentz scalar shell interactions. Rev. Math. Phys. 30, 1850013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, K.: The MIT bag model. Acta Phys. Pol. B 12, 865–892 (1975)

    Google Scholar 

  26. Le Treust, L., Ourmières-Bonafos, T.: Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors. Ann. Henri Poincaré 19, 1465–1487 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Mas, A., Pizzichillo, F.: Klein’s paradox and the relativistic $\delta $-shell interaction in ${\mathbb{R}}^3$. Anal. PDE 11, 705–744 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Olver, F., Daalhuis, A., Lozier, D., Schneider, B., Boisvert, R., Clark, C., Miller, B., Saunders, B.: NIST Digital Library of Mathematical Functions, release 1.0.22 of 2019-03-15. http://dlmf.nist.gov/

  30. Pizzichillo, F., Van Den Bosch, H.: Self-adjointness of two-dimensional Dirac operators on corner domains. J. Spectr. Theory 11, 1043–1079 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Posilicano, A.: On the many Dirichlet Laplacians on a non-convex polygon and their approximations by point interactions. J. Funct. Anal. 265, 303–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  33. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil I: Grundlagen, Teubner, Stuttgart (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

VL acknowledges the support by the Grant No. 21-07129S of the Czech Science Foundation (GAR). The authors would like to thank the referees for their thoughtful consideration of the manuscript, which has resulted in several improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Frymark.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Closedness of the Operator \({\varvec{d}}\) \(_{\tilde{\lambda }}\)

Appendix A. Closedness of the Operator \({\varvec{d}}\) \(_{\tilde{\lambda }}\)

Lemma A.1

The closure of the restriction \({\varvec{d}}_{\widetilde{\lambda }}\upharpoonright C_0^{\infty }({\mathbb {R}}_+,{\mathbb {C}}^2)\) is \({\varvec{d}}_{\widetilde{\lambda }}\) with domain given by (2.21). In particular, \({\varvec{d}}_{\widetilde{\lambda }}\) with domain given by (2.21) is closed.

Proof

We split the analysis into consideration of the two cases \(\widetilde{\lambda }\ne 1/2\) and \(\widetilde{\lambda }= 1/2\).

Let \(\widetilde{\lambda }\ne 1/2\). For any \(\psi \in C^\infty _0({\mathbb {R}}_+,{\mathbb {C}}^2)\), observe that

$$\begin{aligned} \begin{aligned}&\Vert {\varvec{d}}_{\widetilde{\lambda }}\psi \Vert ^2_{L^2({\mathbb {R}}_+,{\mathbb {C}}^2)} = \int _{{\mathbb {R}}_+}\left| \psi _2' + \frac{\widetilde{\lambda }\psi _2}{r}\right| ^2\hbox {d}r + \int _{{\mathbb {R}}_+}\left| \psi _1'- \frac{\widetilde{\lambda }\psi _1}{r}\right| ^2\hbox {d}r\\&\quad = \int _{{\mathbb {R}}_+}\left( |\psi _2'|^2 + \frac{2\widetilde{\lambda }\Re (\psi _2'\overline{\psi _2})}{r} +\frac{\widetilde{\lambda }^2|\psi _2|^2}{r^2}\right) \hbox {d}r\\&\qquad + \int _{{\mathbb {R}}_+}\left( |\psi _1'|^2 - \frac{2\widetilde{\lambda }\Re (\psi _1'\overline{\psi _1})}{r} +\frac{\widetilde{\lambda }^2|\psi _1|^2}{r^2}\right) \hbox {d}r\\&\quad = \int _{{\mathbb {R}}_+}\left( |\psi _2'|^2 + \frac{\widetilde{\lambda }(|\psi _2|^2)'}{r} +\frac{\widetilde{\lambda }^2|\psi _2|^2}{r^2}\right) \hbox {d}r\\ {}&\qquad + \int _{{\mathbb {R}}_+}\left( |\psi _1'|^2 - \frac{\widetilde{\lambda }(|\psi _1|^2)'}{r} +\frac{\widetilde{\lambda }^2|\psi _1|^2}{r^2}\right) \hbox {d}r\\&\quad = \int _{{\mathbb {R}}_+}\left( |\psi _2'|^2 +\frac{(\widetilde{\lambda }^2+\widetilde{\lambda })|\psi _2|^2}{r^2}\right) \hbox {d}r + \int _{{\mathbb {R}}_+}\left( |\psi _1'|^2 +\frac{(\widetilde{\lambda }^2-\widetilde{\lambda })|\psi _1|^2}{r^2}\right) \hbox {d}r,\\ \end{aligned} \end{aligned}$$

where in the last step we performed integration by parts. Combining the above formula with the one-dimensional Hardy inequality

$$\begin{aligned} \int _{{\mathbb {R}}_+}|\psi '|^2\hbox {d}r \ge \int _{{\mathbb {R}}_+}\frac{|\psi |^2}{4r^2}\hbox {d}r ,\qquad \forall \,\psi \in H^1_0({\mathbb {R}}_+), \end{aligned}$$

we conclude that the graph-norm induced by the operator \({\varvec{d}}_{\widetilde{\lambda }}\) on the space \(C^\infty _0({\mathbb {R}}_+,{\mathbb {C}}^2)\) is equivalent to the \(H^1\)-norm. Indeed, we get the double sided estimate

$$\begin{aligned} \min \{1,(1-2\widetilde{\lambda })^2\}\Vert \psi \Vert ^2_{H^1({\mathbb {R}}_+,{\mathbb {C}}^2)}\le & {} \Vert {\varvec{d}}_{\widetilde{\lambda }}\psi \Vert ^2_{L^2({\mathbb {R}}_+,{\mathbb {C}}^2)} +\Vert \psi \Vert ^2_{L^2({\mathbb {R}}_+,{\mathbb {C}}^2)}\\\le & {} \left( 1+2\widetilde{\lambda }\right) ^2 \Vert \psi \Vert ^2_{H^1({\mathbb {R}}_+,{\mathbb {C}}^2)} \end{aligned}$$

for any \(\psi \in C^\infty _0({\mathbb {R}}_+,{\mathbb {C}}^2)\). Hence, we have \({\varvec{d}}_{\widetilde{\lambda }} = \overline{{\varvec{d}}_{\widetilde{\lambda }}\upharpoonright C^\infty _0({\mathbb {R}}_+,{\mathbb {C}}^2)}\) and thus the operator \({\varvec{d}}_{\widetilde{\lambda }}\) is closed in this case.

Let \(\widetilde{\lambda }= 1/2\). Using [16, Proposition 40] (see also [10, Proposition 3.1]), one can check that the domain of \({\varvec{d}}_{1/2}\) can be alternatively characterized as

$$\begin{aligned} {{\,\mathrm{dom}\,}}{\varvec{d}}_{1/2} = \left\{ \psi \in L^2({\mathbb {R}}_+,{\mathbb {C}}^2):\psi _1'-\frac{\psi _1}{2r}, \psi _2'+\frac{\psi _2}{2r}\in L^2({\mathbb {R}}_+)\right\} . \end{aligned}$$

Closedness of \({\varvec{d}}_{1/2}\) then follows from [13, Equation (1.10) and Theorem 1.1(ii)]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frymark, D., Lotoreichik, V. Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs. Ann. Henri Poincaré 24, 179–221 (2023). https://doi.org/10.1007/s00023-022-01213-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01213-w

Mathematics Subject Classification

Navigation