Skip to main content
Log in

A Numerical Approach for the Existence of Dissipative Weak Solutions to a Compressible Two-fluid Model

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

As an extension of the recent work of Novotný et al. (J Elliptic Parabol Equ 7:537–570 2021), we study the dissipative weak solutions to a compressible two-fluid model system describing the time evolution of two fluid flows sharing the same velocity field in multi-dimensional spaces. We prove the existence of dissipative weak solutions alternatively via a finite volume approximation. Further, we apply the weak–strong uniqueness principle to show the convergence of the finite volume approximation towards the strong solution on the lifespan of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Discrete Continuous Dynamical Systems -A 41, 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bresch, D., Desjardins, B., Ghidaglia, J.M., Grenier, E., Hilliairet, M.: Multifluid models including compressible fluids. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Eds. Y. Giga et A. Novotný, pp. 52, (2018)

  3. Bresch, D., Mucha, P.B., Zatorska, E.: Finite-energy solutions for compressible two-fluid Stokes system. Arch. Ration. Mech. Anal. 232, 987–1029 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83(9), 243–275 (2004)

    Article  MathSciNet  Google Scholar 

  5. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differential Equations 245, 2662–2703 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Evje, S., Wen, H., Zhu, C.: On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow. Math. Models Methods Appl. Sci. 27, 323–346 (2017)

    Article  MathSciNet  Google Scholar 

  7. Feireisl, E., Lukáčová-Medvid’ová, M.: Convergence of a mixed finite element-finite volume scheme for the isentropic Navier-Stokes system via the dissipative measure-valued solutions. Found. Comput. Math. 18(3), 703–730 (2018)

    Article  MathSciNet  Google Scholar 

  8. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Convergence of a finite volume scheme for the compressible Navier-Stokes system. ESAIM: M2AN 53(6), 1957–1979 (2019)

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical analysis of compressible fluid flows, Volume 20 of MS &A series. Springer, Berlin (2021)

    Book  Google Scholar 

  10. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  13. Gwiazda, P.: On measure-valued solutions to a two-dimensional gravity-driven avalance flow model. Math. Methods Appl. Sci. 28, 2201–2223 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, Berlin (2006)

    Book  Google Scholar 

  15. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120 (1971)

    Article  MathSciNet  Google Scholar 

  16. Jin, B.J., Novotný, A.: Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids. J. Differ. Equ. 268, 204–238 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jin, B., Kwon, Y.-S., Necasova, S., Novotný, A.: Existence and stability of dissipative turbulent solutions to a simple bi-fluid model of compressible fluids. J. Elliptic Parabol. Equ. 7, 537–570 (2021)

    Article  MathSciNet  Google Scholar 

  18. Karper, T.: A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kwon, Y.-S., Li, F.: Incompressible inviscid limit of the viscous two-fluid model with general initial data. Z. Angew. Math. Phys. 70, 17 (2019)

    Article  MathSciNet  Google Scholar 

  20. Kwon, Y.-S., Novotny, A.: Consistency, convergence and error estimates for a mixed finite element-finite volume scheme to compressible Navier-Stokes equations with general inflow/outflow boundary data. IMA J. Numer. Anal. To appear, (2020)

  21. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  22. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Mizerová, H., She, B.: Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system. J. Sci. Comput. 84(1), 25 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nash, J.: Le problème de Cauchy pour leséquations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    Article  MathSciNet  Google Scholar 

  25. Novotný, A., Pokorný, M.: Weak solutions for some compressible multicomponent fluid models. Arch. Ration. Mech. Anal. 235, 355–403 (2020)

    Article  MathSciNet  Google Scholar 

  26. Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-fluid model with finite energy. J. Math. Pures Appl. 9(125), 247–282 (2019)

    Article  MathSciNet  Google Scholar 

  27. Wen, H.: On global solutions to a viscous compressible two-fluid model with unconstrained transition to single-phase flow in three dimensions. Calc. Var. Partial Differential Equations. 60, 158 (2021)

    Article  MathSciNet  Google Scholar 

  28. Yao, L., Zhang, T., Zhu, C.: Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model. SIAM J. Math. Anal. 42, 1874–1897 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Y. Li is supported by National Natural Science Foundation of China under grant No. 12001003. The research of B. She is supported by Czech Science Foundation, grant No. GJ19-11707Y and the Primus programme (PRIMUS/19/SCI/01) of Charles University. The institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840. We thank Prof. A. Novotný for fruitful discussions in mathematics. We are grateful not only for his contributions in the field of mathematical and numerical analysis on compressible viscous fluid models but also nice personality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangwei She.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by M. Pokorny.

Dedicated to the Memory of Professor Antonín Novotný

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “In memory of Anton in Novotny” edited by Eduard Feireisl, Paolo Galdi, and Milan Pokorny.

A Appendix

A Appendix

This appendix is dedicated to the proof of Proposition 1.1. To this end, we establish the relative energy inequality to (1.1)–(1.5) satisfied for any dissipative weak solutions and any suitable test functions. Then the proof is finished with the help of Gronwall-type argument. Note that we shall present the proof in case of Dirichlet boundary conditions. The case of periodic boundary conditions can be carried out analogously and the details are therefore omitted.

1.1 A.1 Relative energy inequality

Let \((\varrho ,n,{\varvec{u}})\) be a dissipative weak solution to (1.1)–(1.5) and \((r,b,{\mathbf {U}})\) belongs to

$$\begin{aligned} \left\{ \begin{aligned}&r,b\in C^1(\overline{Q_T}) ,\,\, r,b>0 \text { in }\overline{Q_T}, \\&{\mathbf {U}}\in C^1(\overline{Q_T} ;\mathbb {R}^d),\,\,{\mathbf {U}}|_{\partial \Omega }={\varvec{0}}.\\ \end{aligned}\right. \end{aligned}$$
(A.1)

Similar to [19], we introduce the relative energy as

$$\begin{aligned} {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,(r,b,{\mathbf {U}})\Big )(\tau ) :=\int _{\Omega } \Big [ \frac{1}{2}{\mathfrak {r}}|{\varvec{u}}-{\mathbf {U}}|^2 \end{aligned}$$
$$\begin{aligned} +H(\varrho )-H(r)-H'(r)(\varrho -r)+G(n)-G(b)-G'(b)(n-b) \Big ] \mathrm{d} x. \end{aligned}$$
(A.2)

Notice that we may rewrite the relative energy in an equivalent form as follows

$$\begin{aligned} {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,(r,b,{\mathbf {U}})\Big )(\tau )= & {} \int _{\Omega } \left( \frac{1}{2}{\mathfrak {r}}|{\varvec{u}}|^2+H(\varrho )+G(n) \right) \mathrm{d} x+\int _{\Omega }\left( \frac{1}{2}\varrho |{\mathbf {U}}|^2 -H'(r)\varrho \right) \mathrm{d} x\\&+\int _{\Omega }\left( \frac{1}{2}n |{\mathbf {U}}|^2 -G'(b)n \right) \mathrm{d} x\end{aligned}$$
$$\begin{aligned} -\int _{\Omega } {\mathfrak {r}}{\varvec{u}}\cdot {\mathbf {U}} \mathrm{d} x+\int _{\Omega } \left( r^{\gamma }+b^{\alpha } \right) \mathrm{d} x. \end{aligned}$$
(A.3)

The crucial observation is that the integrals on the right-hand side of (A.3) can be expressed through the weak formulations (1.7)–(1.10) with suitable choices of test functions. To handle the density-dependent terms, testing the continuity Eq. (1.7) by \(\frac{1}{2}|{\mathbf {U}}|^2\) and \(H'(r)\) gives

$$\begin{aligned}&\int _0^{\tau }\int _{\Omega } \Big ( \varrho {\mathbf {U}}\cdot \partial _t {\mathbf {U}}+ \varrho {\varvec{u}}\cdot \nabla _x {\mathbf {U}} \cdot {\mathbf {U}} \Big )\mathrm{d} x\mathrm{d} t = \left[ \int _{\Omega } \frac{1}{2} \varrho |{\mathbf {U}}|^2 \mathrm{d} x\right] _{t=0}^{t=\tau }; \end{aligned}$$
(A.4)
$$\begin{aligned}&\int _0^{\tau }\int _{\Omega } \Big ( \varrho \partial _t H'(r)+ \varrho {\varvec{u}}\cdot \nabla _x H'(r) \Big )\mathrm{d} x\mathrm{d} t = \left[ \int _{\Omega } \varrho H'(r) \mathrm{d} x\right] _{t=0}^{t=\tau } ; \end{aligned}$$
(A.5)

In the same manner, we test the continuity Eq. (1.8) by \(\frac{1}{2}|{\mathbf {U}}|^2\) and \(G'(b)\) to obtain

$$\begin{aligned} \int _0^{\tau }\int _{\Omega } \Big ( n {\mathbf {U}}\cdot \partial _t {\mathbf {U}}+ n {\varvec{u}}\cdot \nabla _x {\mathbf {U}} \cdot {\mathbf {U}} \Big )\mathrm{d} x\mathrm{d} t = \left[ \int _{\Omega } \frac{1}{2} n |{\mathbf {U}}|^2 \mathrm{d} x\right] _{t=0}^{t=\tau }; \end{aligned}$$
(A.6)
$$\begin{aligned} \int _0^{\tau }\int _{\Omega } \Big ( n \partial _t G'(b)+ n{\varvec{u}}\cdot \nabla _x G'(b) \Big )\mathrm{d} x\mathrm{d} t = \left[ \int _{\Omega } n G'(b) \mathrm{d} x\right] _{t=0}^{t=\tau } . \end{aligned}$$
(A.7)

Upon choosing \({\mathbf {U}}\) as a test function in the momentum Eq. (1.9),

$$\begin{aligned}&\int _0^{\tau }\int _{\Omega } \Big ( {\mathfrak {r}}{\varvec{u}}\cdot \partial _t {\mathbf {U}} + {\mathfrak {r}}{\varvec{u}}\otimes {\varvec{u}}: \nabla _x {\mathbf {U}}+p(\varrho ,n)\mathrm{div}_x {\mathbf {U}} -{\mathbb {S}}(\nabla _x{\varvec{u}}):\nabla _x {\mathbf {U}} \Big ) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{ \overline{\Omega }}\nabla _x {\mathbf {U}} : \mathrm{d} \mu _c(t) \mathrm{d} t =\left[ \int _{\Omega } {\mathfrak {r}}{\varvec{u}}\cdot {\mathbf {U}} \mathrm{d} x\right] _{t=0}^{t=\tau } . \end{aligned}$$
(A.8)

Taking (A.4)–(A.8) and the balance of total energy (1.10) into account, we may estimate (A.3), in agreement with the compressible Navier-Stokes system [11], to arrive at

$$\begin{aligned}&\left[ {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,(r,b,{\mathbf {U}})\Big )\right] _{t=0}^{t=\tau } +\int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\mathbf {U}}):(\nabla _x {\varvec{u}}-\nabla _x {\mathbf {U}}) \Big )\mathrm{d} x\mathrm{d} t +\int _{ \overline{\Omega }} \mathrm{d} {\mathcal {D}}(\tau ) \nonumber \\&\quad \le \int _0^{\tau }\int _{\Omega } {\mathfrak {r}}({\mathbf {U}}-{\varvec{u}})\cdot \Big ( \partial _t {\mathbf {U}} +{\varvec{u}}\cdot \nabla _x {\mathbf {U}} \Big ) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{\Omega } {\mathbb {S}} (\nabla _x {\mathbf {U}}): \left( \nabla _x {\mathbf {U}}-\nabla _x {\varvec{u}}\right) \mathrm{d} x\mathrm{d} t -\int _0^{\tau }\int _{\Omega } p(\varrho ,n)\mathrm{div}_x {\mathbf {U}}\mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{\Omega } \Big [ \left( 1-\frac{\varrho }{r} \right) \gamma r ^{\gamma -1} \partial _t r -\varrho {\varvec{u}}\cdot \gamma r^{\gamma -2} \nabla _x r \Big ] \mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{\Omega } \Big [ \left( 1-\frac{n}{b} \right) \alpha b ^{\alpha -1} \partial _t b -n{\varvec{u}}\cdot \alpha b^{\alpha -2} \nabla _x b \Big ] \mathrm{d} x\mathrm{d} t \nonumber \\&\quad \le \int _0^{\tau }\int _{\Omega } {\mathfrak {r}}({\mathbf {U}}-{\varvec{u}})\cdot \Big ( \partial _t {\mathbf {U}} +{\varvec{u}}\cdot \nabla _x {\mathbf {U}} \Big ) \mathrm{d} x\mathrm{d} t +\int _0^{\tau }\int _{\Omega } {\mathbb {S}} (\nabla _x {\mathbf {U}}): \left( \nabla _x {\mathbf {U}}-\nabla _x {\varvec{u}}\right) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad + \int _0^{\tau }\int _{\Omega } (r-\varrho )\partial _t \left( \frac{\gamma }{\gamma -1}r^{\gamma -1} \right) \mathrm{d} x\mathrm{d} t + \int _0^{\tau }\int _{\Omega } (b-n)\partial _t \left( \frac{\alpha }{\alpha -1}b^{\alpha -1} \right) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{\Omega } (r{\mathbf {U}}-\varrho {\varvec{u}})\cdot \nabla _x \left( \frac{\gamma }{\gamma -1}r^{\gamma -1} \right) \mathrm{d} x\mathrm{d} t +\int _0^{\tau }\int _{\Omega } (b{\mathbf {U}}-n {\varvec{u}}) \cdot \nabla _x \left( \frac{\alpha }{\alpha -1}b^{\alpha -1} \right) \mathrm{d} x\mathrm{d} t .\nonumber \\&\quad -\int _0^{\tau }\int _{\Omega }\Big [ p(\varrho ,n)-p(r,b) \Big ]\mathrm{div}_x {\mathbf {U}} \mathrm{d} x\mathrm{d} t -\int _0^{\tau }\int _{ \overline{\Omega }}\nabla _x {\mathbf {U}} : \mathrm{d} \mu _c(t) \mathrm{d} t . \end{aligned}$$
(A.9)

Remark A.1

Compared with [19], our relative energy inequality (A.9) holds for any test functions belonging to the class (A.1) and incorporates the phenomena of oscillations and concentrations.

1.2 A.2 Weak–strong uniqueness principle

Basically, the proof of weak–strong uniqueness principle consists of:

  • choosing the classical solution \(({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\) as the test function \((r,b,{\mathbf {U}})\) in the relative energy inequality (A.9);

  • estimating each term on the right-hand side of the relative energy inequality in a suitable manner;

  • application of Gronwall-type argument.

To do this, assume that \(({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\) is a strong solution to (1.1)–(1.5) starting from the smooth initial data \(({\tilde{\varrho }}_0,{\tilde{n}}_0,{\tilde{{\varvec{u}}}}_0)\) with strictly positive \({\tilde{\varrho }}_0\) and \({\tilde{n}}_0\). Let \((\varrho ,n,{\varvec{u}})\) be a dissipative weak solution to (1.1)–(1.5) emanating from the same initial data. It follows from (A.9) that

$$\begin{aligned}&{\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(\tau ) +\int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +\int _{ \overline{\Omega }} \mathrm{d} {\mathcal {D}}(\tau ) \nonumber \\&\quad \le \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot \Big [{\mathfrak {r}}\Big (\partial _t {\tilde{{\varvec{u}}}} +{\varvec{u}}\cdot \nabla _x {\tilde{{\varvec{u}}}}\Big )-\mathrm{div}_x {\mathbb {S}} (\nabla _x {\tilde{{\varvec{u}}}}) \Big ] \mathrm{d} x\mathrm{d} t \nonumber \\&\quad + \int _0^{\tau }\int _{\Omega } ({\tilde{\varrho }}-\varrho )\partial _t \left( \frac{\gamma }{\gamma -1}{\tilde{\varrho }}^{\gamma -1} \right) \mathrm{d} x\mathrm{d} t + \int _0^{\tau }\int _{\Omega } ({\tilde{n}}-n)\partial _t \left( \frac{\alpha }{\alpha -1}{\tilde{n}}^{\alpha -1} \right) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad +\int _0^{\tau }\int _{\Omega } ({\tilde{\varrho }}{\tilde{{\varvec{u}}}}-\varrho {\varvec{u}})\cdot \nabla _x \left( \frac{\gamma }{\gamma -1}{\tilde{\varrho }}^{\gamma -1} \right) \mathrm{d} x\mathrm{d} t +\int _0^{\tau }\int _{\Omega } ({\tilde{n}}{\tilde{{\varvec{u}}}}-n {\varvec{u}}) \cdot \nabla _x \left( \frac{\alpha }{\alpha -1}{\tilde{n}}^{\alpha -1} \right) \mathrm{d} x\mathrm{d} t .\nonumber \\&\quad -\int _0^{\tau }\int _{\Omega }\Big [ p(\varrho ,n)-p({\tilde{\varrho }},{\tilde{n}}) \Big ]\mathrm{div}_x {\tilde{{\varvec{u}}}} \mathrm{d} x\mathrm{d} t -\int _0^{\tau }\int _{ \overline{\Omega }}\nabla _x {\tilde{{\varvec{u}}}} : \mathrm{d} \mu _c(t) \mathrm{d} t . \end{aligned}$$
(A.10)

In light of the fact that \(({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\) solves (1.1) in the classical sense, we furthermore rewrite the relative energy inequality as (see for instance [16] for similar calculations)

$$\begin{aligned}&{\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(\tau ) +\int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +\int _{ \overline{\Omega }} \mathrm{d} {\mathcal {D}}(\tau )\nonumber \\&\quad \le \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot \Big [({\mathfrak {r}}-{\tilde{{\mathfrak {r}}}} )\partial _t {\tilde{{\varvec{u}}}} + ({\mathfrak {r}}{\varvec{u}}- {\tilde{{\mathfrak {r}}}} {\tilde{{\varvec{u}}}})\cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t \nonumber \\&\quad + \int _0^{\tau }\int _{\Omega }(\varrho -{\tilde{\varrho }}) ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot \nabla _x \left( \frac{\gamma }{\gamma -1}{\tilde{\varrho }}^{\gamma -1} \right) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad + \int _0^{\tau }\int _{\Omega }(n-{\tilde{n}}) ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot \nabla _x \left( \frac{\alpha }{\alpha -1}{\tilde{n}}^{\alpha -1} \right) \mathrm{d} x\mathrm{d} t \nonumber \\&\quad -\int _0^{\tau }\int _{\Omega }\Big [ \Big ( \varrho ^{\gamma }-{\tilde{\varrho }}^{\gamma }-\gamma {\tilde{\varrho }}^{\gamma -1}(\varrho -{\tilde{\varrho }}) \Big ) + \Big ( n^{\alpha }-{\tilde{n}}^{\alpha }-\alpha {\tilde{n}}^{\alpha -1}(n-{\tilde{n}}) \Big ) \Big ] \mathrm{div}_x {\tilde{{\varvec{u}}}} \mathrm{d} x\mathrm{d} t \nonumber \\&\quad -\int _0^{\tau }\int _{ \overline{\Omega }}\nabla _x {\tilde{{\varvec{u}}}} : \mathrm{d} \mu _c(t) \mathrm{d} t =:\sum _{j=1}^5{\mathcal {R}}^{(j)}. \end{aligned}$$
(A.11)

Notice that we may rewrite \({\mathcal {R}}^{(1)}\) as

$$\begin{aligned} {\mathcal {R}}^{(1)}= & {} \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot ({\mathfrak {r}}-{\tilde{{\mathfrak {r}}}} ) \Big [\partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t \\&+\int _0^{\tau }\int _{\Omega } {\mathfrak {r}}({\varvec{u}}-{\tilde{{\varvec{u}}}}) \cdot \nabla _x {\tilde{{\varvec{u}}}} \cdot ({\tilde{{\varvec{u}}}}-{\varvec{u}}) \mathrm{d} x\mathrm{d} t =:{\mathcal {R}}^{(1)}_1+{\mathcal {R}}^{(1)}_2. \end{aligned}$$

Obviously, it holds

$$\begin{aligned} |{\mathcal {R}}^{(1)}_2|\lesssim \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t . \end{aligned}$$
(A.12)

Next, to show the estimate of \({\mathcal {R}}^{(1)}_1\), we first recall [9, Lemma 14.3] for the following estimates.

$$\begin{aligned}&\Big [ \Big ( \varrho ^{\gamma }-{\tilde{\varrho }}^{\gamma }-\gamma {\tilde{\varrho }}^{\gamma -1}(\varrho -{\tilde{\varrho }}) \Big ) + \Big ( n^{\alpha }-{\tilde{n}}^{\alpha }-\alpha {\tilde{n}}^{\alpha -1}(n-{\tilde{n}}) \Big ) \Big ]\nonumber \\&\quad \gtrsim \left\{ \begin{aligned}&(\varrho -{\tilde{\varrho }})^2+(n-{\tilde{n}})^2 ,\,\, \text { if }\varrho \in [1/2\min _{\overline{Q_T}}{\tilde{\varrho }},2\max _{\overline{Q_T}}{\tilde{\varrho }}],n\in [1/2\min _{\overline{Q_T}}{\tilde{n}},2\max _{\overline{Q_T}}{\tilde{n}}], \\&1+\varrho ^{\gamma }+n^{\alpha } ,\,\, \text { otherwise} .\\ \end{aligned}\right. \end{aligned}$$
(A.13)

Moreover, following [12], we may decompose any measurable function f(tx) as the sum of “essential part” and “residual part”:

$$\begin{aligned} {[}f]_{\text {ess}}(t,x)= \left\{ \begin{aligned}&f(t,x) ,\,\, \text { if }\varrho \in [1/2\min _{\overline{Q_T}}{\tilde{\varrho }},2\max _{\overline{Q_T}}{\tilde{\varrho }}],n\in [1/2\min _{\overline{Q_T}}{\tilde{n}},2\max _{\overline{Q_T}}{\tilde{n}}], \\&0,\,\, \text { otherwise} ; \\ \end{aligned}\right. \\ {[}f]_{\text {res}}(t,x)=f(t,x)-[f]_{\text {ess}}(t,x). \end{aligned}$$

Thus,

$$\begin{aligned}&{\mathcal {R}}^{(1)}_1= \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot [{\mathfrak {r}}-{\tilde{{\mathfrak {r}}}}]_{\text {ess}} \Big [\partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t \nonumber \\&\quad + \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot [{\mathfrak {r}}-{\tilde{{\mathfrak {r}}}}]_{\text {res}} \Big [\partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t . \end{aligned}$$
(A.14)

Observe first that

$$\begin{aligned}&\left| \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot [{\mathfrak {r}}-{\tilde{{\mathfrak {r}}}}]_{\text {ess}} \Big [\partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t \right| \nonumber \\&\quad \le \int _0^{\tau } \Vert \partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Vert _{L^{\infty }(\Omega )} \Vert {\varvec{u}}- {\tilde{{\varvec{u}}}}\Vert _{L^2(\Omega )}\Vert [{\mathfrak {r}}-{\tilde{{\mathfrak {r}}}}]_{\text {ess}} \Vert _{L^2(\Omega )} \mathrm{d} t \nonumber \\&\quad \lesssim \varepsilon \int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t + C(\varepsilon ) \left( \Vert [\varrho -{\tilde{\varrho }}]_{\text {ess}} \Vert _{L^2(\Omega )}^2+\Vert [n-{\tilde{n}}]_{\text {ess}} \Vert _{L^2(\Omega )}^2 \right) \nonumber \\&\quad \lesssim \varepsilon \int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +C(\varepsilon ) \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t , \end{aligned}$$
(A.15)

where we have employed the generalized Korn’s inequality in the second step and the first item of (A.17) in the third step. Next, it follows that

$$\begin{aligned}&\left| \int _0^{\tau }\int _{\Omega } ({\tilde{{\varvec{u}}}}-{\varvec{u}})\cdot [{\mathfrak {r}}-{\tilde{{\mathfrak {r}}}}]_{\text {res}} \Big [\partial _t {\tilde{{\varvec{u}}}} + {\tilde{{\varvec{u}}}} \cdot \nabla _x {\tilde{{\varvec{u}}}} \Big ] \mathrm{d} x\mathrm{d} t \right| \nonumber \\&\quad \lesssim \int _0^{\tau } \int _{\Omega } |{\varvec{u}}- {\tilde{{\varvec{u}}}}| \Big (|[\varrho -{\tilde{\varrho }}]_{\text {res}}|+|[n-{\tilde{n}}]_{\text {res}}| \Big )\mathrm{d} x\mathrm{d} t . \end{aligned}$$
(A.16)

We make a decomposition as follows.

$$\begin{aligned}&\int _0^{\tau } \int _{\Omega } |{\varvec{u}}- {\tilde{{\varvec{u}}}}| |[\varrho -{\tilde{\varrho }}]_{\text {res}}| \mathrm{d} x\mathrm{d} t \\&\quad =\int _0^{\tau } \int _{\varrho \le 1/2\min _{\overline{Q_T}}{\tilde{\varrho }}} |{\varvec{u}}- {\tilde{{\varvec{u}}}}| |[\varrho -{\tilde{\varrho }}]_{\text {res}}| \mathrm{d} x\mathrm{d} t +\int _0^{\tau } \int _{\varrho \ge 2\max _{\overline{Q_T}}{\tilde{\varrho }}} |{\varvec{u}}- {\tilde{{\varvec{u}}}}| |[\varrho -{\tilde{\varrho }}]_{\text {res}}| \mathrm{d} x\mathrm{d} t ; \end{aligned}$$

Making use of the generalized Korn’s inequality and the second item of (A.17),

$$\begin{aligned}&\int _0^{\tau } \int _{\varrho \le 1/2\min _{\overline{Q_T}}{\tilde{\varrho }}} |{\varvec{u}}- {\tilde{{\varvec{u}}}}| |[\varrho -{\tilde{\varrho }}]_{\text {res}}| \mathrm{d} x\mathrm{d} t \lesssim \int _0^{\tau } \Vert [1]_{\text {res}}\Vert _{L^2(\Omega )} \Vert {\varvec{u}}- {\tilde{{\varvec{u}}}} \Vert _{L^2(\Omega )} \mathrm{d} t \nonumber \\&\quad \lesssim \varepsilon \int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +C(\varepsilon ) \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t .\qquad \quad \end{aligned}$$
(A.17)

In the same spirit,

$$\begin{aligned}&\int _0^{\tau } \int _{\varrho \ge 2\max _{\overline{Q_T}}{\tilde{\varrho }}} |{\varvec{u}}- {\tilde{{\varvec{u}}}}| |[\varrho -{\tilde{\varrho }}]_{\text {res}}| \mathrm{d} x\mathrm{d} t \lesssim \int _0^{\tau }\int _{\Omega } |[1]_{\text {res}}| \sqrt{\varrho }|{\varvec{u}}- {\tilde{{\varvec{u}}}}| \sqrt{\varrho } \mathrm{d} x\mathrm{d} t \nonumber \\&\quad \lesssim \int _0^{\tau }\int _{\Omega } |[1]_{\text {res}}| \sqrt{{\mathfrak {r}}}|{\varvec{u}}- {\tilde{{\varvec{u}}}}| \sqrt{\varrho } \mathrm{d} x\mathrm{d} t \lesssim \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t . \end{aligned}$$
(A.18)

The estimate of the second integral in (A.16) can be carried in exactly the same manner. Therefore, combining (A.12), (A.14)–(A.18),

$$\begin{aligned} |{\mathcal {R}}^{(1)}| \lesssim \varepsilon \int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +C(\varepsilon ) \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t . \end{aligned}$$
(A.19)

It is easy to see that \({\mathcal {R}}^{(2)}\) and \({\mathcal {R}}^{(3)}\) can be estimated analogously as above. Next, we observe that

$$\begin{aligned}&\Big | \Big ( \varrho ^{\gamma }-{\tilde{\varrho }}^{\gamma }-\gamma {\tilde{\varrho }}^{\gamma -1}(\varrho -{\tilde{\varrho }}) \Big ) + \Big ( n^{\alpha }-{\tilde{n}}^{\alpha }-\alpha {\tilde{n}}^{\alpha -1}(n-{\tilde{n}}) \Big ) \Big | \\&\quad \lesssim H(\varrho )-H({\tilde{\varrho }})-H'({\tilde{\varrho }})(\varrho -{\tilde{\varrho }})+G(n)-G({\tilde{n}})-G'({\tilde{n}})(n-{\tilde{n}}), \end{aligned}$$

whence

$$\begin{aligned} |{\mathcal {R}}^{(4)} |\lesssim \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t . \end{aligned}$$
(A.20)

Finally,

$$\begin{aligned} |{\mathcal {R}}^{(5)}|=\Big |\int _0^{\tau }\int _{ \overline{\Omega }}\nabla _x {\tilde{{\varvec{u}}}} : \mathrm{d} \mu _c(t) \mathrm{d} t \Big | \le \Vert \nabla _x {\tilde{{\varvec{u}}}}\Vert _{L^{\infty }(\overline{Q_T})}\int _0^{\tau } \int _{ \overline{\Omega }} \mathrm{d}{\mathcal {D}}(t)\mathrm{d} t . \end{aligned}$$
(A.21)

Consequently, collecting the estimates above, we conclude from (A.11) that, upon choosing \(\varepsilon >0\) sufficiently small,

$$\begin{aligned}&{\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(\tau ) +\int _0^{\tau }\int _{\Omega } \Big ( {\mathbb {S}}(\nabla _x{\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}):(\nabla _x {\varvec{u}}-\nabla _x {\tilde{{\varvec{u}}}}) \Big )\mathrm{d} x\mathrm{d} t +\int _{ \overline{\Omega }} \mathrm{d} {\mathcal {D}}(\tau ) \\&\quad \lesssim \int _0^{\tau } {\mathcal {E}}\Big ((\varrho ,n,{\varvec{u}})\,\Big |\,({\tilde{\varrho }},{\tilde{n}},{\tilde{{\varvec{u}}}})\Big )(t) \mathrm{d} t +\int _0^{\tau } \int _{ \overline{\Omega }} \mathrm{d}{\mathcal {D}}(t)\mathrm{d} t , \end{aligned}$$

which immediately finishes the proof of Proposition 1.1 by Gronwall’s inequality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., She, B. A Numerical Approach for the Existence of Dissipative Weak Solutions to a Compressible Two-fluid Model. J. Math. Fluid Mech. 24, 78 (2022). https://doi.org/10.1007/s00021-022-00706-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00706-2

Keywords

Mathematics Subject Classification

Navigation