Skip to main content

On Some Recent Results from the Theory of MHD Equations

  • Chapter
  • First Online:
Fluids Under Control

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

  • 171 Accesses

Abstract

This chapter shows the main ideas of the derivation of the MHD and Hall–MHD equations (Sect. 1) and provides a brief survey of qualitative properties of these equations (Sect. 2). Some results that concern the role of the pressure in the theory of the MHD equations are presented in Sect. 3, and one local regularity criterion for suitable weak solutions to the MHD equations, which uses the behavior of the L3-norm of the velocity and the magnetic field as t approaches the hypothetic singular time t0, is presented in Sect. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Acheritogaray, P. Degond, A. Frouvelle, J.-G. Liu: Kinetic formulation and global existence for the Hall-magnetohydrodynamic system. Kinet. Relat. Models4 (2011), 901–918.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bardos, C. Sulem, P. L. Sulem: Longtime dynamics of a conductive fluid in the presence of a strong magnetic field. Transactions Amer. Math. Soc.305 (1988), No. 1, 175–191.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. C. Brozzi, M. C. Lopes Filho, H. J. Nussenzweig Lopes: Wild solutions for 2D incompressible ideal flow with passive tracer. Comm. Math. Sci13 (2015), 1333–1343.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math.35 (1982), 771–831.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Cao, J. Wu: Two regularity criteria for the 3D MHD equations. J. Diff. Equations248 (2010), 2263–2274.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cao, J. Wu: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic difussion. Adv. Math.226 (2011), 1803–1822.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Chae, P. Degond, J.-G. Liu: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincarè Anal. Non Linéaire31 (2014), 555–565.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Chae, J. Lee: On the blow-up criterion and small data global existence for the Hall magnetohydrodynamics. J. Diff. Equations256 (2014), 3835–3858.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Chae, J. Wolf: On partial regularity for the steady Hall magnetohydrodynamics system. Comm. Math/ Phys.339 (2015), 1147–1166.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Chae, J. Wolf: On partial regularity for the 3D nonstationary magnetohydrodynamics equations on the plane. SIAM J. Math. Anal.48 (2016), 443–469.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Chae, J. Wolf: Regularity of the 3D stationary Hall magnetohydrodynamic equations on the plane. Comm. Math. Phys.354 (2017), 213–230.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Chae, J. Wolf: On Liouville type theorems for the stationary MHD and Hall-MHD systems. J. Diff. Equations295 (2021), 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Chae, J. Kim, J. Wolf: On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in \({\mathbb R}^3\). Z. Angew. Math. Phys.73 (2022), No. 2, paper No. 66.

    Google Scholar 

  14. D. Chae, S. Weng: Singularity formation for the incompressible Hall-MHD equations without resistivity. Ann. Inst. Henri Poincare Anal. Nonlineaire33 (2016), 1009–1022.

    Article  MathSciNet  MATH  Google Scholar 

  15. U. J. Choe, J. Neustupa, M. Yang: Improved regularity criteria for the MHD equations in terms of pressure using an Orlicz norm. Applied Mathematics Letters132, October 2022, Paper No. 108121.

    Google Scholar 

  16. H. J. Choe, M. Yang: Hausdorff measure of the singular set in the incompressible magnetohydrodynamic equations. Com. Math. Phys.336 (2015), 171–198.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Donatelli, S. Spirito: Vanishing dielectric constant regime for the Navier–Stokes–Maxwell equations. Nonlin. Diff. Equ. Appl.23 (2016), No. 3, Art. no. 28, 19 pp.

    Google Scholar 

  18. G. Duvaut, J. L. Lions: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rat. Mech. Anal.46 (1972), 241–279.

    Article  MATH  Google Scholar 

  19. L. Escauriaza, G. Seregin, V. Šverák: L3,–solutions to the Navier–Stokes equations and backward uniqueness. Russ. Math. Surveys58 (2003), No. 2, 211–250.

    Article  MATH  Google Scholar 

  20. J. Fan, S. Jiang, G. Nakamura, Y. Zhou: Logarithmically improved regularity criteria for the Navier?-Stokes and MHD equations. J. Math. Fluid Mech.13 (2011), 557–571.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Fan, T. Ozawa: Local Cauchy problem for the MHD equations with mass diffusion. Dif. Int. Equations24 (2011), 11–12, 1037–1046.

    MathSciNet  MATH  Google Scholar 

  22. S. Gala, A. M. Ragusa, Z. Ye: An improved blow-up criterion for smooth solutions of the two-dimensional MHD equations. Math. Meth. Appl. Sci.40 (2017), No. 1, 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. P. Galdi: An Introduction to the Navier–Stokes initial–boundary value problem. In Fundamental Directions in Mathematical Fluid Mechanics, ed. G. P. Galdi, J. Heywood, R. Rannacher, series “Advances in Mathematical Fluid Mechanics”. Birkhauser, Basel 2000, 1–98.

    Google Scholar 

  24. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady–State Problems. 2nd Edition, Springer 2011.

    Google Scholar 

  25. S. Galtier: Introduction to Modern Magnetohydrodynamics. Cambridge University Press 2016.

    Google Scholar 

  26. Ch. He, Z. Xin: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Diff. Equations213 (2005), 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ch. He, Z. Xin: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal.227 (2005), 113–152.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Ji, J. Lee: Some regularity criteria for the 3D incompressible magnetohydrodynamics. J. Math. Anal. Appl.369 (2010), No. 1, 317–322.

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Jia, Y. Zhou: Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal. Real World Appl.13 (2012), 410–418.

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Jia: A new scaling invariant regularity criterion for the 3D MHD equations in terms of horizontal gradient of horizontal components. Appl. Math. Lett.50 (2015), 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Jia, Y. Zhou: Regularity criteria for the 3D MHD equations via partial derivatives. Kinet. Relat. Models5 (2012), No. 3, 505–516.

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Jia, Y. Zhou: Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinet. Relat. Models7 (2014), 291–304.

    Google Scholar 

  33. X. Jia, Y. Zhou: On regularity criteria for the 3D incompressible MHD equations involving one velocity component. J. Math. Fluid Mech.18 (2016), 187–206.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Jiang, Q. Ju, X. Xu: Small Alfvén number limit for incompressible magneto-hydrodynamics in a domain with boundaries. Science China Mathematics62 (2019), 11, 2229–2248.

    Google Scholar 

  35. K. Kang, J.-M. Kim: Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space. J. Diff. Equations253 (2012), 764–794.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Kang, J.-M. Kim: Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Func. Anal.266 (2014), 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Kang, J. Lee: Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Diff. Equations247 (2009), 2310–2330.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-M. Kim: Local regularity criteria of a suitable weak solution to MHD equations. Acta Mathematica Scientia37B (2017), No. 4, 1033–1047.

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Kozono, Y. Terasawa, Y. Wakasugi: A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions. J. Funct. Anal.272 2017, No. 2, 804–818.

    Google Scholar 

  40. H. Lin, L. Du: Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions. Nonlinearity26 (2013), 219–239.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. J. Lighthill: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Phil. Trans. of the Royal Society of London. Series A, Mathematical and Physical Sciences,252 (1960), No. 1014, 397–430.

    MathSciNet  MATH  Google Scholar 

  42. F. Lin, L. Xu, P. Zhang: Global small solutions of 2D incompressible MHD system. J. Diff. Equations259 (2015), 5440–5485.

    Article  MATH  Google Scholar 

  43. Y. Lin, H. Zhang, Y. Zhou: Global smooth solutions of MHD equations with large data. J. Diff. Equations261 (2016), 102–112.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Li, Y. Yu, W. Zhu: A class large solution of the 3D Hall-magnetohydrodynamic equations. J. Diff. Equations268 (2020), 5811–5822.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Mahalov,. B. Nicolaenko, T. Shilkin: L3,-solutions to the MHD equations. J. of Math. Sci.143 (2007), 2,2911–2923.

    Article  Google Scholar 

  46. H. Miura, D. Hori: Hall effects on local structure in decaying MHD turbulence. J. Plasma Fusion Res.8 (2009), 73–76.

    Google Scholar 

  47. J. Neustupa, P. Penel: Regularity of weak solutions to the Navier–Stokes equations in dependence on eigenvalues and eigenvectors of the rate of deformation tensor. In Progress in Nonlinear Differential Equations and their Applications, Vol. 61, eds. J. F. Rodriguez, G. Seregin and J. M. Urbano, Birkhauser, Basel 2004, 197–213.

    Google Scholar 

  48. J. Neustupa, P. Penel: On regularity of a weak solution to the Navier–Stokes equation with generalized impermeability boundary conditions. Nonlinear Analysis66 (2007), 1753–1769.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Neustupa, P. Penel: Regularity of a weak solution to the Navier–Stokes equations via one component of a spectral projection of vorticity. SIAM J. Math. Anal.46 (2014), 2, 1681–1700.

    Google Scholar 

  50. J. Neustupa: The role of pressure in the theory of weak solutions to the Navier–Stokes equations. A chapter in the book Fluids Under Pressure, eds. T. Bodnár, G. P. Galdi, Š. Nečasová, series Adv. Math. Fluid Mech., Birkhäuser–Springer, Cham, 2020, pp. 349–416.

    Google Scholar 

  51. J. Neustupa, M. Yang: A new sufficient condition for local regularity of a suitable weak solution to the MHD equations. J. Math. Anal. Appl.502 (2021), Article No. 125258.

    Google Scholar 

  52. J. Neustupa, M. Yang: On the pressure in the theory of MHD Equations. Nonlinear Analysis: Real World Applications60 (2021), Article No. 103283.

    Google Scholar 

  53. J. Neustupa, M. Yang: New regularity criteria for weak solutions to the MHD equations in terms of an associated pressure. J. Math. Fluid Mech.23 (2021), Article No. 73, https://doi.org/10.1007/s00021-021-00597-9.

  54. J. Neustupa, P. Penel, M. Yang: Regularity criteria for weak solutions to the Navier–Stokes equations in terms of spectral projections of vorticity and velocity. J. Math. Fluid Mech. (2022) 24:104.

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Ni, Z. Guo, Y. Zhou: Some new regularity criteria for the 3D MHD equations. J. Math. Anal. Appl.396 (2012), 108–118.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Pan, Y. Zhou, Y. Zhu: Global classical solutions of three-dimensional viscous MHD system without magnetic diffusion on periodic boxes. Arch. Rat. Mech. Anal.227 (2018), 637–662.

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Pick, A. Kufner, O. John, S. Fučík: Function Spaces I. De Gruyter, Berlin–Boston 2013.

    MATH  Google Scholar 

  58. J. M. Polygiannakis, X. Moussas: A review of magneto-vorticity induction in Hall-MHD plasmas. Plasma Phys. Control. Fusion43 (2001), 195–221.

    Article  Google Scholar 

  59. G. A. Seregin: A certain necessary condition of potential blow up for Navier–Stokes equations. Comm. Math. Phys.312 (2012), 833–845.

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Seregin, V. Šverák: Navier-Stokes equations with lower bounds on the pressure. Arch. Rat. Mech. Anal.163 (2002), 65–86.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. A. Seregin: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity29 2016, No. 6, 2191–2195.

    Google Scholar 

  62. M. Sermange, R. Temam: Some mathematical questions related to the MHD equations. Rapports de Recherche No. 185, INRIA, Centre de Rocquencourt, 1983, 1–44.

    Google Scholar 

  63. H. Sohr, W. von Wahl: On the regularity of the pressure of weak solutions of Navier-Stokes equations. Arch. Math.46 (1986), 428–439.

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Sohr,The Navier–Stokes equations. An elementary functional analytic approach, Birkhäuser advanced texts, Basel–Boston–Berlin, 2001.

    Google Scholar 

  65. Z. Tan, Y. Wang: Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems. SIAM J. Math. Anal.50 (2018), 1432–1470.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford 1977.

    MATH  Google Scholar 

  67. V. Vyalov, T. Shilkin: On the boundary regularity of weak solutions to the MHD system. J. Math. Sci.178 (2011), no. 3, 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Vyalov: On the local smoothness of weak solutions to the MHD system near the boundary. J. Math. Sci.185 (2012), no. 5, 659–667.

    Article  MathSciNet  MATH  Google Scholar 

  69. V. Vyalov: On the regularity of weak solutions to the MHD system near the boundary. J. Math. Fluid Mech.16 (2014), 745–769.

    Article  MathSciNet  Google Scholar 

  70. W. Wang, Z. Zhang: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal.45 (2013), No. 5, 2666–2677.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Wolf: On the local pressure of the Navier-Stokes equations and related systems. Adv. Differential Equations22 (2017), no. 5–6, 305–338.

    MathSciNet  MATH  Google Scholar 

  72. L. Xu, P. Zhang: Global small solutions in three-dimensional incompressible magnetohydrodynamical system. SIAM J. Math. Anal.47 (2015), 47–65.

    Article  Google Scholar 

  73. Z. Zhang, P. Hong, D. Zhong, S. Qiu: A regularity criterion for the 3D MHD equations in terms of the gradient of the pressure in the multiplier spaces. Arabian J. of Math.4 (2015), 153–157.

    Article  MathSciNet  MATH  Google Scholar 

  74. H. Zhang: Global large smooth solutions for 3-D Hall-magnetohydrodynamics. Disc. Cont. Dyn. Syst.39 (2019), No. 11, 6669–6682.

    Article  MathSciNet  MATH  Google Scholar 

  75. Y. Zhou: Regularity criteria for the 3D MHD equations in terms of the pressure. Int. J. Non-Linear Mech.41 (2006), 1174–1180.

    Article  MathSciNet  MATH  Google Scholar 

  76. Y. Zhou, J. Fan: Logarithmically improved regularity criteria for the 3-D viscous MHD equations. Forum Math.24 (2012), No. 4, 691–708.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported by the Grant Agency of the Czech Republic (grant No. 22-08633J) and by the Academy of Sciences of the Czech Republic (RVO 67985840). The second author has been supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government(MSIT) No. 2021R1A2C4002840 and No. 2021K2A9A1A06091213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neustupa, J., Yang, M. (2023). On Some Recent Results from the Theory of MHD Equations. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Fluids Under Control. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-27625-5_6

Download citation

Publish with us

Policies and ethics