Skip to main content

New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows

  • Conference paper
  • First Online:

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 28))

Abstract

We present new invariant domain preserving finite volume schemes for the compressible Euler and Navier–Stokes–Fourier systems. The schemes are entropy stable and preserve positivity of density and internal energy. More importantly, their convergence towards a strong solution of the limit system has been proved rigorously in [9, 11]. We will demonstrate their accuracy and robustness on a series of numerical experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19–43 (2006)

    Article  MathSciNet  Google Scholar 

  2. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70(4), 1227–1245 (2018)

    Article  MathSciNet  Google Scholar 

  3. Březina, J., Feireisl, E., Novotný, A.: Stability of strong solutions to the Navier-Stokes-Fourier system. SIAM J. Math. Anal. 52(2), 1761–1785 (2020)

    Article  MathSciNet  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  5. Cockburn, B., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Dolejší, V., Feistauer, M.: Discontinuous Galerkin method: analysis and applications to compressible flow. Springer Series in Computational Mathematics, vol. 48, Springer-Verlag (2015)

    Google Scholar 

  7. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Dif. 55(6), 55–141 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144, 89–132 (2020)

    Article  MathSciNet  Google Scholar 

  10. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: M2AN 53(6), 1957-1979 (2019)

    Google Scholar 

  11. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: On the convergence of a finite volume scheme for the compressible Navier–Stokes–Fourier system. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa060

  12. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 3 271–306 (1959)

    Google Scholar 

  13. Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  Google Scholar 

  14. Guermond, J.L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Num. Anal. 54, 2466–2489 (2016)

    Article  MathSciNet  Google Scholar 

  15. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lukáčová-Medvid’ová, M., Saibertová, J., Warnecke, G.: Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems. J. Comput. Phys. 183(2), 533–562 (2002)

    Google Scholar 

  17. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  Google Scholar 

  18. Shen, H., Wen, C.Y., Zhang, D.L.: A characteristic space-time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101–118 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shu, C., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  20. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  21. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. Math. Comp. 49(179), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  22. Tadmor, E.: Minimum entropy principle in the gas dynamic equations. Appl. Num. Math. 2, 211–219 (1986)

    Article  MathSciNet  Google Scholar 

  23. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd edn. Springer-Verlag, Berlin (2009)

    Book  Google Scholar 

  24. VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.A.: Well-centered triangulation. SIAM J. Sci. Comput. 31(6), 4497–4523 (2010)

    Article  MathSciNet  Google Scholar 

  25. Xu, K., Kim, C., Martinelli, L., Jameson, A.: BGK-based schemes for the simulation of compressible flow. Int. J. Comput. Fluid Dyn. 7(3), 213–235 (1996)

    Article  Google Scholar 

Download references

Acknowledgement

M. Lukáčová-Medviďová has been partially supported by the German Science Foundation under the grants TRR 146 Multiscale simulation methods for soft matter systems and TRR 165 Waves to weather. H. Mizerová and B. She have received funding from the Czech Science Foundation (GAČR), Grant Agreement 18–05974S. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Mizerová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukáčová-Medviďová, M., Mizerová, H., She, B. (2021). New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows. In: Muñoz-Ruiz, M.L., Parés, C., Russo, G. (eds) Recent Advances in Numerical Methods for Hyperbolic PDE Systems. SEMA SIMAI Springer Series, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-72850-2_6

Download citation

Publish with us

Policies and ethics