Skip to main content

Stability of a Steady Flow of an Incompressible Newtonian Fluid in an Exterior Domain

  • Chapter
  • First Online:
Waves in Flows

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

  • 308 Accesses

Abstract

This chapter provides a brief survey of studies on stability of a steady flow of an incompressible Newtonian fluid around a compact body \(\mathcal {B}\). Results on the long-time behavior and stability under assumptions of “sufficient smallness” of some quantities are cited and briefly described in Sect. 9.2. Results, mainly based on assumptions on spectrum of a certain associated linear operator are presented in Sect. 9.3. Finally, Sect. 9.4 contains a short note on analogous results concerning the case when body \(\mathcal {B}\) rotates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. I. Babenko: Spectrum of the linearized problem of flow of a viscous incompressible liquid round a body. Sov. Phys. Dokl. 27 (1982), 25–27.

    MATH  Google Scholar 

  2. W. Borchers: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitation thesis, University of Paderborn, 1992.

    Google Scholar 

  3. W. Borchers, T. Miyakawa: L 2–decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Rat. Mech. Anal. 118 (1992), 273–295.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Borchers, T. Miyakawa: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174 (1995), 311–382.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Cumsille, M. Tucsnak: Wellpossedness for the Navier–Stokes flow in the exterior of a rotating obstacle. Math. Meth. Appl. Sci 29 (2006), 595–623.

    Article  MATH  Google Scholar 

  6. P. Deuring, J. Neustupa: An eigenvalue criterion for stability of a steady Navier–Stokes flow in . J. Math. Fluid Mech. 12 (2010), 202–242.

    Google Scholar 

  7. P. Deuring, S. Kračmar, Š. Nečasová: Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity. J. Diff. Equations 255 (2013), No. 7, 1576–1606.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Deuring, S. Kračmar, Š. Nečasová: A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discr. Cont. Dyn. Syst. A 37 (2017), No. 3, 1389–1409.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deuring: Stability of stationary viscous incompressible flow around a rigid body performing a translation. J. Math. Fluid Mech. 20 (2018), 3, 937–967.

    Google Scholar 

  10. P. Deuring: Oseen resolvent estimates with small resolvent parameter. J. Diff. Equations 265 (2018), 1, 280–311.

    Google Scholar 

  11. R. Farwig: The stationary Navier–Stokes equations in a 3D–exterior domain. Lecture Notes in Num. Appl. Anal. 16 (1998), 53–115.

    MathSciNet  MATH  Google Scholar 

  12. R. Farwig: An L q-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. 58 (2005), 129–147.

    MathSciNet  MATH  Google Scholar 

  13. R. Farwig, J. Neustupa: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscripta Mathematica 122 (2007), 419–437.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Farwig, J. Neustupa: On the spectrum of an Oseen–type operator arising from flow past a rotating body. Integral Equations and Operator Theory 62 (2008), 169–189.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Farwig, M. Krbec, Š. Nečasová: L q–approach to Oseen flow around a rotating body. Math. Meth. Appl. Sci. 31 (2008), 5, 551–574.

    Google Scholar 

  16. R. Farwig, J. Neustupa: On the spectrum of an Oseen–type operator arising from fluid flow past a rotating body in \(L^q_{\sigma }(\varOmega )\). Tohoku Math. J. 62 (2010), 2, 287–309.

    Google Scholar 

  17. R. Farwig, Š. Nečasová, J. Neustupa: Spectral analysis of a Stokes–type operator arising from flow around a rotating body. J. Math. Soc. Japan 63 (2011), 1, 163–194.

    Google Scholar 

  18. R. Finn: On the exterior stationary problem for the Navier–Stokes equations and associated perturbation problems. Arch. Rat. Mech. Anal. 19 (1965), 363–406.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Friedlander, N. Pavlovich, R. Shvydkoy: Nonlinear instability for the Navier–Stokes equations. Comm. Math. Phys. 204 (2006), 335–347.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. P. Galdi, S. Rionero: Local estimates and stability of viscous flows in an exterior domain. Arch. Rat. Mech. Anal. 81 (1983), 333–347.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. P. Galdi, S. Rionero: Weighted Energy Methods in Fluid Dynamics and Elasticity. Springer–Verlag, Lecture Notes in Mathematics 1134, Berlin–Heidelberg–New York–Tokyo 1985.

    Google Scholar 

  22. G. P. Galdi, P. Maremonti: Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains. Arch. Rat. Mech. Anal. 94 (1986), 253–266.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. P. Galdi, M. Padula: A new approach to energy theory in the stability of fluid motion. Arch. Rat. Mech. Anal. 110 (1990), 187–286.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. P. Galdi: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In Handbook of Mathematical Fluid Dynamics, eds. S. Friedlander and D. Serre, Vol. 1, Elsevier 2002.

    Google Scholar 

  25. G. P. Galdi: Steady flow of a Navier-Stokes fluid around a rotating obstacle. J. Elasticity 71 (2003), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. P. Galdi, A. L. Silvestre: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Rat. Mech. Anal. 176 (2005), 331–350.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. P. Galdi, A. L. Silvestre: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Rat. Mech. Anal. 184 (2007), 371–400.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady–State Problems. 2nd Edition, Springer 2011.

    Google Scholar 

  29. G. P. Galdi, J. Neustupa: Stability of steady flow past a rotating body. In Mathematical Fluid Dynamics, Present and Future, Series: Springer Proceedings in Mathematics & Statistics, Vol. 183, eds. Y. Suzuki and Y. Shibata, Springer Japan, Tokyo 2016, pp. 71–94.

    Google Scholar 

  30. G. P. Galdi, J. Neustupa: Steady flows around moving bodies. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, ed. Y. Giga and A. Novotný, Springer Int. Publishing 2018, 341–417.

    Google Scholar 

  31. G. P. Galdi, J. Neustupa: Nonlinear spectral instability of steady-state flow of a viscous liquid past a rotating obstacle. Math. Annal. (2020), https://doi.org/10.1007/s00208-020-02045-x.

  32. M. Geissert, H. Heck, M. Hieber: L p–theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596 (2006), 45–62.

    MathSciNet  MATH  Google Scholar 

  33. Y. Giga, H. Sohr: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103–130.

    Google Scholar 

  34. J. G. Heywood: On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Rat. Mech. Anal. 37 (1970), 48–60.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. G. Heywood: The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129 (1972), 11–34.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. G. Heywood: The Navier–Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639–681.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Hishida: The Stokes operator with rotation effect in exterior domains. Analysis 19 (1999), 51–67.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Hishida: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Rat. Mech. Anal. 150 (1999), 307–348.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Hishida: L q estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Japan. 58 (2006), 743–767.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Hishida, Y. Shibata: L pL q estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle. Arch. Rat. Mech. Anal. 193 (2009), 339–421.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Kato: Perturbation Theory for Linear Operators. Springer–Verlag, Berlin–Heidelberg–New York 1966.

    Google Scholar 

  42. H. Kielhöfer: On the Lyapunov stability of stationary solutions of semilinear parabolic differential equations, J. Diff. Equations 22 (1976), 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Kozono, T. Ogawa: On stability of Navier–Stokes flows in exterior domains. Arch. Rat. Mech. Anal. 128 (1994), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Kozono, M. Yamazaki: On a large class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228 (1998), 751–785.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Kozono: Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J. Func. Anal. 176 (2000), 153–197.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. L. Lions, E. Magenes: Nonhomogeneous Boundary Value Problems and Applications I. Springer–Verlag, New York 1972.

    Book  MATH  Google Scholar 

  47. P. Maremonti: Asymptotic stability theorems for viscous fluid motions in exterior domains. Rend. Sem. Mat. Univ. Padova 71 (1984), 35–72.

    MathSciNet  MATH  Google Scholar 

  48. P. Maremonti: Stabilità asintotica in media per moti fluidi viscosi in domini esterni. Ann. Mat. Pura Appl. 142 (1985), 4, 57–75.

    Google Scholar 

  49. K. Masuda: On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Japan 27 (1975), 294–327.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Miyakawa: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12 (1982), 115–140.

    MathSciNet  MATH  Google Scholar 

  51. T. Miyakawa, H. Sohr: On energy inequality, smoothness and large time behavior in L 2 for weak solutions of the Navier–Stokes equations in exterior domains, Math. Z. 199 (1988), 455–478.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Neustupa: Stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 11 (2009), 22–45.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Neustupa: A spectral criterion for stability of a steady viscous incompressible flow past an obstacle. J. of Math. Fluid Mech. 18 (2016), 133–156.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York–San Francisco–London 1978.

    Google Scholar 

  55. D. H. Sattinger: The mathematical problem of hydrodynamic stability. J. of Math. and Mech. 18 (1970), 797–817.

    MathSciNet  MATH  Google Scholar 

  56. L. I. Sazonov: Justification of the linearization method in the flow problem. Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 85–109 (Russian).

    MATH  Google Scholar 

  57. Y. Shibata: On an exterior initial boundary value problem for Navier–Stokes equations. Quarterly of Appl. Math. LVII (1999), 1, 117–155.

    Google Scholar 

  58. Y. Shibata: A stability theorem of the Navier-Stokes flow past a rotating body. Proc. of the conf. “Parabolic and Navier-Stokes equations”, Banach Center Publications Vol. 81, Institute of Mathematics, Polish Academy of Sciences, Warsaw 2008, 441–455.

    Google Scholar 

Download references

Acknowledgements

The research has been supported by the Grant Agency of the Czech Republic (grant No. 19-04243S) and by the Academy of Sciences of the Czech Republic (RVO 67985840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neustupa, J. (2021). Stability of a Steady Flow of an Incompressible Newtonian Fluid in an Exterior Domain. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Waves in Flows. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-68144-9_9

Download citation

Publish with us

Policies and ethics