Skip to main content

Sex Differences in Cardiac Ischemia/Reperfusion Injury

  • Chapter
  • First Online:
Sex Differences in Heart Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 21))

Abstract

It is now well known that differences in the structure and function of the heart exist between male and female hearts. Several lines of experimental and clinical investigations have reported that there are sex differences in the tolerance to myocardial ischemia, whereby adult male hearts are more susceptible to ischemia/reperfusion (I/R) injury as compared to pre-menopausal female hearts. Experimental studies have also shown that adult female hearts have increased resistance and male hearts are more susceptible to I/R in animals exposed to perinatal hypoxia. Although there is now a large body of evidence which indicates that estrogen is involved in the sex differences with respect to cardiac tolerance to ischemia, the exact mechanisms involved in the cardiac response to ischemia or hypoxia are not fully understood. Accordingly, this chapter is intended to describe some of the known molecular and cellular mechanisms that contribute to sex differences in the susceptibility to I/R injury. With such a new basic information and advancements in the understanding of the mechanisms responsible for sex differences in cardiac sensitivity to ischemic injury, it is hoped that some specific therapeutic strategies will be developed for post-menopausal females for better quality of life, and lower mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97:1–37

    Google Scholar 

  2. Leinwand LA (2003) Sex is a potent modifier of the cardiovascular systém. J Clin Invest 112:302–307

    Google Scholar 

  3. Regitz-Zagrosek V (2006) Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 5:425–439

    Google Scholar 

  4. Ostadal B, Netuka I, Maly J et al (2009) Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med 234:1011–1019

    Google Scholar 

  5. Hulley S, Grady D, Bush T, et al (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280: 605–613

    Google Scholar 

  6. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risk and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women´s Health Initiative randomized controlled trial. JAMA 288:321–333

    Google Scholar 

  7. Ostadal P, Ostadal B (2012) Women and the management of acute coronary syndrome. Can J Physiol Pharmacol 90:1151–1159

    Google Scholar 

  8. Ostadal B, Ostadal P (2014) Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. BJP 171:541–554

    Google Scholar 

  9. Kolar F, Ostadal B (2013) ExActa: Sex differences in cardiovascular function. Acta Physiol 207:584–587

    Google Scholar 

  10. Legato MJ, Leghe JK (2010) Gender and the heart: sex-specific differences in the normal myocardial anatomy and physiology. In: Legato MJ (ed) Principles of Gender Specific Medicine. Elsevier, New York, pp 151–161

    Google Scholar 

  11. De Simone G, Devereux RB, Daniels SR, Meyer RA (1995) Gender differences in left ventricular growth. Hypertension 26:979–983

    Google Scholar 

  12. Olivetti G, Giordano G, Corradi D et al (1995) Gender differences and aging: effects on the human heart. J Am Coll Cardiol 26:1068–1079

    Google Scholar 

  13. Bazet H (1920) An analysis of the time-relations of electrocardiograms. Heart 7:370

    Google Scholar 

  14. Czubryt MP, Espira L, Lamoureux L, Abrenica B (2006) The role of sex in cardiac function and disease. Can J Physiol Pharmacol 84:93–109

    Google Scholar 

  15. Burke JH, Goldberger JJ, Ehlert FA et al (1996) Gender differences in heart rate before and after autonomic blockade: evidence against an intrinsic gender effect. Am J Med 100:537–543

    Google Scholar 

  16. Jochmann N, Stangl K, Garbe E et al (2005) Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases. Eur Heart J 26:1585–1595

    Google Scholar 

  17. Albert CM, McGovern BA, Newell JB, Ruskin JN, Sex differences in cardiac arrest

    Google Scholar 

  18. Machuki JO, Zhang HY, Geng J, et al (2019) Estrogen regulation of cardiac cAMP-L-type Ca2+channel pathway modulates sex differences in basal contraction and responses to β2 AR-mediated stress in left ventricular apical myocytes. Cell Commun Signal 17:1–17

    Google Scholar 

  19. Schwertz DW, Beck JM, Kowalski JM, Ross JD (2004) Sex differences in the response of rat ventricle to calcium. Biol Res Nurs 5:286–298

    Google Scholar 

  20. Schwertz DW, Vizgirda V, Solaro RJ et al (1999) Sexual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem 200:43–53

    Google Scholar 

  21. Farell SR, Ross JL, Howlet SE (2010) Sex differences in mechanisms of cardiac excitation-contraction coupling in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 299:H36–H45

    Google Scholar 

  22. Sims C, Reisenweber S, Viswanathan PC et al (2008) Sex, age, and regional differences in L- type calcium current are important determinants of arrhythmia phenotype in rabbit heart with drug/induced lon QT type 2. Circ Res 102:86–100

    Google Scholar 

  23. Chu SH, Sutherland K, Beck J et al (2005) Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventrikle. Life Sci 76:2735–2749

    Google Scholar 

  24. Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74:456–465

    Google Scholar 

  25. Curl CL, Delbridge LM, Wendt JR (2008) Sex differences in cardiac muscle responsiveness to Ca 2+ and L-type Ca 2+ channel modulation. Eur J Pharmacol 586:288–292

    Google Scholar 

  26. Bell JR, Mellor KM, Wollermann AC, Delbridge LM (2011) Cardiac ischaemic stress: cardiomyocyte Ca 2+, sex and sex steroids. Clin Exp Pharmacol Physiol 38:717–723

    Google Scholar 

  27. MacDonald JK, Pyle WG, Reitz CJ, Howlett SE (2014) Cardiac contraction, calcium transients, and myofilament calcium sensitivity fluctuate with the estrous cycle in young adult female mice. Am J Physiol Heart Circ Physiol 306:H938–H953

    Google Scholar 

  28. Vicencio JM, Ibarra C, Estrada M et al (2006) Testosterone induces an intracellular calcium increase by a non-genomic mechanism in cultured rat cardiac myocytes. Endocrinology 147:1386–1395

    Google Scholar 

  29. Johnson MS, Moore RL, Brown DA (2006) Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blocade in rat. Am J Physiol Heart Circ Physiol 290:H2644–H2647

    Google Scholar 

  30. Bhupathy P, Babu GJ, Ito M, Periasamy M (2009) Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J Mol Cell Cardiol 47:723–729

    Google Scholar 

  31. Keller KM, Howlett SE (2016) Sex differences in the biology and pathology of the aging heart. Can J Cardiol 32:1065–1073

    Google Scholar 

  32. Dworatzek E, Baczko I, Kararigas G (2016) Effects of aging on cardiac extracellular matrix in men and women. Proteomics Clin Appl 10:84–91

    Google Scholar 

  33. De Arellano PS, Kuhl AA et al (2019) Sex differences in the aging human heart: decreased sirtuins, proinflammatory shift and reduced anti-oxidative defense. Aging 11:1918–1933

    Google Scholar 

  34. Milerova M, Drahota Z, Chytilova A et al (2016) Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 412:147–154

    Google Scholar 

  35. Ostadal B, Drahota Z, Houstek J et al (2019) Developmental and sex differences in cardiac tolerance to ischemia-reperfusion injury: the role of mitochondria. Can J Physiol Pharmacol 97:808–814

    Google Scholar 

  36. Ostadal B, Prochazka J, Pelouch V et al (1984) Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov 33:129–138

    Google Scholar 

  37. Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75:478–486

    Google Scholar 

  38. Booth EA, Lucchesi BR (2008) Estrogen-mediated protection in myocardial ischemia-reperfusion injury. Cardiovasc Toxicol 8:101–113

    Google Scholar 

  39. Deschamp AM, Murphy E, Sun J (2010) Estrogen receptor activation and cardioprotection in ischemia-reperfusion injury. Trends Cardiovasc Med 20:73–78

    Google Scholar 

  40. Ross JL, Howlet SE (2012) Age and ovariectomy abolish beneficial effects of female sex on rat ventricular myocytes exposed to stimulated ischemia and reperfusion. PLoS ONE 7:1–11

    Google Scholar 

  41. Bell JR, Porrello ER, Hugginss CE et al (2008) The intrinsic resistence of female hearts to an ischemic insult is abrogated in primary cardiac hypertrophy. Am J Physiol Heart Circ Physiol 294:H1514–H1522

    Google Scholar 

  42. Lujan HL, Di Carlo SE, Sex differences to myocardial ischemia and beta-adrenergic receptor blocade in conscious rats. Am J Physiol Heart Circ Physiol 294: H1523-H1529

    Google Scholar 

  43. Cross HR, Lu L, Steenbergen C et al (1998) Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 83:1215–1223

    Google Scholar 

  44. Cross HR, Murphy E, Steenbergen C (2002) Ca2+ loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 283:H481–H498

    Google Scholar 

  45. Besik J, Szarszoi O, Kunes J et al (2007) Tolerance to acute ischemia in adult male and female spontaneously hypertensive rats. Physiol Res 56:267–274

    Google Scholar 

  46. Clark C, Smith W, Lochner A, Du Toit EF (2011) The effect of gender and obesity on myocardial tolerance to ischemia. Physiol Res 60:291–301

    Google Scholar 

  47. Cavasin MA, Tao Z, Menon S, Yang XP (2004) Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci 75:2181–2192

    Google Scholar 

  48. Litwin SE (1995) The rat model of postinfarction heart failure. Heart Fail 11:182–195

    Google Scholar 

  49. Jain M, Liao R, Podesser BK et al (2002) Influence of gender on the response to hemodynamic overload after myocardial infarction. Am J Physiol Heart Circ Physiol 283:H2544–H2550

    Google Scholar 

  50. Shioura KM, Geenen DL, Goldspink PH (2008) Sex-related changes in cardiac function following myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 295:R528–R534

    Google Scholar 

  51. Turcato S, Turnbull L, Wang GY et al (2006) Ischemic preconditioning depends on age and gender. Basic Res Cardiol 101:235–243

    Google Scholar 

  52. Humphreys RA, Kane KA, Parratt JR (1999) The influence of maturation and gender on the anti-arrhythmic effect of ischaemic preconditioning in rats. Basic Res Cardiol 94:1–8

    Google Scholar 

  53. Wang M, Crisostomo P, Wairiuko GM, Meldrum DR (2006) Estrogen receptor-alpha, mediates acute myocardial protection in females. Am J Physiol Heart Circ Physiol 290:H2204

    Google Scholar 

  54. Ostadalova I, Ostadal B, Kolar F et al (1998) Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865

    Google Scholar 

  55. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Phys Rev 79:635–659

    Google Scholar 

  56. Lieder HR, Irmert A, Kamler M et al (2019) Sex is no determinant of cardioprotection by ischemic preconditioning in rats, but ischemic/reperfused tissue mass is for remote ischemic preconditioning. Physiol Rep 7:e14146

    Google Scholar 

  57. Hausenloy DJ, Kharbanda RK, Moller UK et al (2019) Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet 394:1415–1424

    Google Scholar 

  58. Boese AC, Kim SC, Yin KJ et al, Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 313:H524-H545.

    Google Scholar 

  59. Lagranha CJ, Deschamps A, Aponte A et al (2010) Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 106:1681–1691

    Google Scholar 

  60. Murphy E (2011) Estrogen signaling and cardiovascular disease. Circ Res 109:687–696

    Google Scholar 

  61. Zhai P, Eurell TE, Cooke PS et al (2000) Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild type mice. Am J Physiol Heart Circ Physiol 278:H1640–H1647

    Google Scholar 

  62. Gabel SA, Walker VR, London RE et al (2005) Estrogen receptor beta medites gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 38:289–297

    Google Scholar 

  63. Nikolic I, Liu D, Bell JA et al (2007) Treatment with an estrogen receptor-beta-selective agoinst is cardioprotective. J Mol Cell Cardiol 42:769–780

    Google Scholar 

  64. Arias-Loza PA, Jazbutyte V, Pelzer T (2008) Genetic and pharmacologic strategies to determine the function of estrogen receptor alpha and estrogen receptor beta in cardiovascular system. Gend Med 5(Suppl A):S34–S45

    Google Scholar 

  65. Hutson DD, Gurrala R, Ogola BO et al (2019) Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol Sex Differ 10:1–13

    Google Scholar 

  66. Chen Q, Yager JD, Russo J (2005) Regulation of mitochondrial respirátory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 1746:1–7

    Google Scholar 

  67. Deschamps AM, Murphy E (2009) Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 297:H1806–H1813

    Google Scholar 

  68. Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H13–H23

    Google Scholar 

  69. Di Lisa F (2006) A female way to protect the heart: say NO to calcium. Circ Res 98:298–300

    Google Scholar 

  70. Knowlton AA, Lee AR (2012) Estrogen and the cardiovascular system. Pharmacol Ther 135:54–70

    Google Scholar 

  71. Sun J, Picht E, Ginsburg KS et al (2006) Hypercontractile female hearts exhibit increased S-nitosylation of the L-type Ca 2+ channel alpha 1 subunit and reduced ischemia-reperfusion injury. Circ Res 98:403–411

    Google Scholar 

  72. Tong H, Imahashi K, Steenberger C, Murphy E (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol–3–kinase–dependent pathway is cardioprotective. Circ Res 90:377–379

    Google Scholar 

  73. Lee TM, Su SF, Tsai CC et al (2000) Cardioprotective effects of 17 beta-estradiol produced by activation of mitochondrial ATP-sensitive K + channels in canine hearts. J Mol Cell Cardiol 32:1147–1158

    Google Scholar 

  74. Bae S, Zhang L (2005) Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther 315:1125–1135

    Google Scholar 

  75. Camper-Kirby D, Welch S, Walker A et al (2001) Myocardial Akt activation and gender: increased nuclear aktivity in females versus males. Circ Res 88:1020–1027

    Google Scholar 

  76. Xu Y, Williams SJ, O´Brien D, Davidge ST (2006) Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring. FASEB J 20:1251–1253

    Google Scholar 

  77. Yu Y, Wei SG, Weiss RM, Felfer RB (2018) Sex differences in the central and peripheral manifestation of ischemia-induced heart failure in rats. Am J Physiol Heart Circ Physiol 316:H70-79

    Google Scholar 

  78. Grohe C, Kahlert S, Lobbert K, Vetter H (1998) Expression of oestrogen receptor alpha and beta in rat heart: role of local oestrogen synthesis. J Endocrinol 156:R1–R7

    Google Scholar 

  79. Van Der Wall EE (2011) Testosterone bad for men, good for women? Neth Heart J 19:1–2

    Google Scholar 

  80. Parker MW, Thompson PD (2010) Anabolic-androgen steroids: worse for the heart than we knew? Circ Heart Fail 3:470–471

    Google Scholar 

  81. Jones TH, Kelly DM (2018) Randomized controlled trials-mechanistic studies of testosterone and the cardiovascular systém. Asian J Androl 20:120–130

    Google Scholar 

  82. Ponikowska B, Jankowska EA, Maj J et al (2010) Gondal and andrenal androgen deficiencies as independent predictors of increased cardiovascular mortality in men with type II diabetes mellitus and stable coronary artery disease. Int J Cardiol 143:343–348

    Google Scholar 

  83. Maldonado O, Ramos A, Guapillo M et al (2019) Effects of chronic inhibition of testosterone metabolism on cardiac remodeling after ischemia/reperfusion-induced myocardial damage in gonatectomized rats. Biol Open 8:1–7

    Google Scholar 

  84. Ghimire A, Bisset ES, Howlett SE (2019) Ischemia and reperfusion injury following cardioplegic arrest is attenuated by age and testosterone deficiency in male but not female mice. Biol Sex Differ 10:42–55

    Google Scholar 

  85. Cavasin MA, Tao ZY, Yu AL, Yang XP (2006) Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am J Physiol Heart Circ Physiol 290:H2043–H2050

    Google Scholar 

  86. Tsang S, Wu S, Liu J, Wang TM (2008) Testosterone protects rat hearts against ischaemic insults by enhancing the effects of alpha(1)-adrenoceptor stimulation Br J Pharmacol 153: 693–709

    Google Scholar 

  87. Mendelsohn ME (2005) Molecular and cellular basis of cardiovascular gender differences. Science 335:1583–1587

    Google Scholar 

  88. Li G, Xiao Y, Estrella JL et al (2003) Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult heart. J Soc Gynecol Invest 10:265–274

    Google Scholar 

  89. Li G, Bae S, Zhang L (2004) Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am J Physiol 286:1712–1719

    Google Scholar 

  90. Krecek J (1970) The weanling period as a critical period of development. In: Krecek J (ed) The Postnatal Development of Phenotype. Academia, Prague, pp 33–44

    Google Scholar 

  91. Ostadalova I, Babicky A (2012) periodization of the early postnatal development in the rat with particulat attention to the weaning period. Physiol Res 61(Suppl 1):1–7

    Google Scholar 

  92. Netuka I, Szarszoi O, Maly J et al (2006) Effect of perinatal hypoxia on cardiac tolerance to acute ischaemia in adult male and female rats. Clin Exp Pharmacol Physiol 33:714–719

    Google Scholar 

  93. Xue Q, Zhang L (2009) Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischaemia and reperfusion injury in adult male offspring: role of protein kinase Cε. J Pharmacol Exp Therap 330:624–632

    Google Scholar 

  94. Thompson LP, Song H, Polster BM (2019) Fetal programming and sexual dimorphism of mitochondrial protein expression and activity of hearts of prenatally hypoxic guinea pig offspring. Hindawi Oxid Med Cell Long Article ID 7210249

    Google Scholar 

  95. Patterson AJ, Chen M, Xue Q et al (2010) Chronic prenatal hypoxia induces epigenetic programming of PKCε gene expression in rat hearts. Circulation Res 107:365–373

    Google Scholar 

  96. Lv J, Ma Q, Dasgupta Ch et al (2019) Antenatal hypoxia and programming of glucocorticoid receptor expression in the adult heart. Front Physiol 10:art. 323

    Google Scholar 

Download references

Acknowledgments

This study was supported by grant of the Czech Science Foundation 18-03207S and by an institutional grant MH CZ-DRO (Nemocnice Na Homolce-NNH, 00023884), IG150501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohuslav Ostadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostadal, B., Ostadal, P., Neckar, J. (2020). Sex Differences in Cardiac Ischemia/Reperfusion Injury. In: Ostadal, B., Dhalla, N.S. (eds) Sex Differences in Heart Disease. Advances in Biochemistry in Health and Disease, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-58677-5_2

Download citation

Publish with us

Policies and ethics