Skip to main content

Conventional, Apodized, and Relief Phase-Contrast Microscopy

  • Protocol
  • First Online:
Book cover Neurohistology and Imaging Techniques

Part of the book series: Neuromethods ((NM,volume 153))

Abstract

Non-absorbing colorless specimens (phase objects) can be visualized either by chemical staining (histology) or by the so-called optical contrasting (staining). The latter is achieved by converting optical phase shifts within the specimen, invisible to human eye, to intensity differences in the microscopic image. Out of several available modes of microscopic phase visualization, conventional, apodized, and relief phase contrast are described in detail. A comparison with relief contrast alone, that is, the off-axis (schlieren) illumination mode is presented as well. Images of various phase specimens of biological origin are shown, demonstrating the strong and weak points of each mode. Physiological aspects of image comprehension, facilitated by shading and other visual cues to depth structure are briefly discussed. A phase-contrast microscope equipped with an objective hosting no phase annulus is presented; the latter is located in a pupil projection (optically relayed) plane, in an external attachment unit. This setup enables phase-contrast and, for example, conventional epi-fluorescence and total internal reflection fluorescence (TIRF) images to be acquired with a single objective lens. Such modality is demonstrated in growth cones of neuroblastoma–glioma hybrid mouse–rat cells and touch receptor neurons of Caenorhabditis elegans. Examples of phase-contrast imaging in electron and X-ray (synchrotron radiation) microscopy are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://microscopyu.com/galleries/dicphasecontrast/index.html

  2. 2.

    http://microscopyu.com/galleries/dicphasecontrast/index.html

  3. 3.

    https://www.microscopyu.com/tutorials/phase-contrast-microscope-alignment

  4. 4.

    http://mikroskop-online.de/Mikroskop%20Druckschriften.htm

  5. 5.

    https://archive.org/details/Leitz

  6. 6.

    Barer R (1954) Naturwissenchaften 41(9):206–208. https://doi.org/10.1007/BF00623016

  7. 7.

    https://www.zeiss.com/corporate/int/about-zeiss/history/archives

  8. 8.

    http://mikroskop-online.de/Mikroskop%20Druckschriften.htm

  9. 9.

    http://mikroskop-online.de/Mikroskopiezusatzeinrichtungen.htm

  10. 10.

    CZ.02.1.01/0.0/0.0/16-019/0000729

  11. 11.

    Terminology in phase-contrast microscopy has not been entirely consistent over time. An additional complexity arises when various imaging modes are combined (e.g., relief phase contrast), and a specific terminology is used in electron microscopy.

  12. 12.

    A compilation of all Zernike’s papers is now available [71], including translations to English. A historical account of early time-lapse phase-contrast microscopy [13] may be found in Refs. [72, 73]. Phase-contrast recording of phagocytosis [74] may now be viewed as a video [75].

References

  1. Zernike F (1955) How I discovered phase contrast. Science 121(3141):345–349. https://doi.org/10.1126/science.121.3141.345. Transcript of Nobel Lecture (https://www.nobelprize.org/prizes/physics/1953)

  2. Needham GH (1958) The practical use of the microscope. Charles C. Thomas, Springfield, IL. https://lccn.loc.gov/57010440

    Google Scholar 

  3. Inoué S, Spring KR (1997) Video microscopy: the fundamentals. Plenum Press (Springer), New York. ISBN: 9780306455315

    Book  Google Scholar 

  4. Ross KFA (1967) Phase contrast and interference microscopy for cell biologists. Edward Arnold, London. ISBN: 0713121335

    Google Scholar 

  5. Osterberg H (1955) Phase and interference microscopy. In: Oster G, Pollister AW (eds) Physical techniques in biological research, vol. I (Optical techniques). Academic Press, New York, pp 377–437. https://lccn.loc.gov/54011056

  6. Bennett AH, Jupnik H, Osterberg H, Richards OW (1951) Phase microscopy: principles and applications. Wiley, New York. ISBN: 9780343275006 (2018 reedition by Franklin Classics). https://doi.org/10.5962/bhl.title.5881

  7. Pluta M (1975) Non-standard methods of phase contrast microscopy. In: Barer R, Coslett VE (eds) Advances in optical and electron microscopy, vol 6. Academic, London, pp 49–133. ISBN: 0120299062

    Google Scholar 

  8. Pluta M (1989) Phase contrast microscopy. In: Advanced light microscopy, Specialized methods, vol 2. PWN (Polish Scientific Publishers), Warsaw, pp 1–90. pp. 385–388. ISBN: 9780444989185

    Google Scholar 

  9. Zernike F (1934) Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Month Notic Roy Astron Soc 94(5):377–384. https://doi.org/10.1093/mnras/94.5.377

    Article  Google Scholar 

  10. Burch CR (1934) On the phase-contrast test of F. Zernike. Month Notic Roy Astron Soc 94(5):384–399. https://doi.org/10.1093/mnras/94.5.384

    Article  Google Scholar 

  11. Zernike F (1942) Phase contrast, a new method for the microscopic observation of transparent objects (Parts I and II). Physica (Amsterdam) 9(7):686–698. https://doi.org/10.1016/S0031-8914(42)80035-X, and 9(10):974–986. https://doi.org/10.1016/S0031-8914(42)80079-8

  12. Tolansky S (1967) Frits Zernike 1888-1966. Biogr Mem Fellows Roy Soc 13:392–402. https://doi.org/10.1098/rsbm.1967.0021

    Article  Google Scholar 

  13. Michel K (1943/1944/1958) Die Reifeteilungen (Meiose) bei der Spermatogenese der Schnarrheuschrecke (Psophus stridulus L.). Hochschulfilm C443/1944, Reichsanstalt für Film und Bild in Wissenschaft und Unterricht (RWU), Berlin 1944 (Wissenschaftlicher Film C443/1944, Institut für den Wissenschaftlichen Film, Göttingen 1958). https://doi.org/10.7295/W9CIL39225. Video still images published in Zeiss Nachrichten 4(9):236–251 (1943). http://www.archive.zeiss.de/objekt_start.fau?prj=zeiss&dm=Druckschriften&ref=86486

  14. Hostounský Z, Pelc R (2007) Phase-contrast versus off-axis illumination: is a more complex microscope always more powerful? Adv Physiol Educ 31(2):232–235. https://doi.org/10.1152/advan.00028.2006

    Article  PubMed  Google Scholar 

  15. Hostounský Z, Pelc R (2006) An efficient way of high-contrast, quasi­3D cellular imaging: off­axis illumination. J Biochem Biophys Meth 68(1):23–30. https://doi.org/10.1016/j.jbbm.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  16. Pelc R, Hostounský Z, Otaki T (2008) Correlation between off-axis illumination and apodized phase-contrast: two complementary microscopic phase-imaging modes. J Biomed Opt 13(5):054067. https://doi.org/10.1117/1.2966716

    Article  PubMed  Google Scholar 

  17. Pelc R, Hostounský Z, Otaki T (2008) Relief- and apodized-phase-contrast imaging of biological specimens. 9th Asia-Pacific Microscopy Conference (APMC9), Jeju Island, Korea, 2-7 Nov 2008. Kor J Microsc 38(4­Suppl):1073–1074 (on CD only)

    Google Scholar 

  18. Töpler A (1866) Ueber die Methode der Schlierenbeobachtung als mikroskopisches Hülfsmittel, nebst Bemerkungen zur Theorie der schiefen Beleuchtung. (Poggendorff’s) Annalen der Physik und Chemie (Leipzig) 127(4):556–580. https://doi.org/10.1002/andp.18662030405 [Annalen der Physik (Berlin) 203(4):556–580]

    Article  Google Scholar 

  19. Abbe E (1873) Ueber einen neuen Beleuchtungsapparat am Mikroskop. (Schultze’s) Archiv für Mikroskopische Anatomie (Bonn) 9:469–480. https://doi.org/10.1007/BF02956177. BHL:13290387. https://biodiversitylibrary.org/page/13290387. English version: Ref. [20]

  20. Abbe E (1875) A new illuminating apparatus for the microscope. Month Microsc J 13:77–82. https://biodiversitylibrary.org/page/14276730

  21. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. (Schultze’s) Archiv für Mikroskopische Anatomie (Bonn) 9:413–468. https://doi.org/10.1007/BF02956173 BHL:13290331. https://biodiversitylibrary.org/page/13290331. English version: Ref. 22

  22. Abbe E (1874/1875) A contribution to the theory of the microscope, and the nature of microscopic vision. Proceedings of the Bristol Naturalists’ Society (new series) 1(Pt2):200–261 (translation and comments by H. E. Fripp). https://biodiversitylibrary.org/page/7506100

  23. Stephenson JW (1877) Observations on professor Abbe’s experiments illustrating his theory of microscopic vision. Month Microsc J 17:82–88. BHL:14157879. https://biodiversitylibrary.org/page/14157879

  24. Nuttall B (2008) Image formation in the microscope: the Abbe diffraction apparatus. Bull Sci Instrum Soc 96:27–29

    Google Scholar 

  25. Rheinberg J (1905) On the collected papers of Abbe, and microscope theory in Germany. J Quekett Microsc Club. (series 2) 9(56):153–166. https://biodiversitylibrary.org/page/2200471

  26. Michel K (1964) Die Grundzüge der Theorie des Mikroskops in elementarer Darstellung (Physik und Technik, vol. 1, 2nd ed). Wissenschaftliche Verlagsgesellschaft, Stuttgart [3rd edition (1981) as ISBN: 3804706193]

    Google Scholar 

  27. Hoffman R (1977) The modulation contrast microscope: principles and performance. J Microsc (Oxf) 110(Pt3):205–222. https://doi.org/10.1111/j.1365-2818.1977.tb00033.x

    Article  Google Scholar 

  28. Köhler A, Loos W (1941) Das Phasenkontrastverfahren und seine Anwendungen in der Mikroskopie. Naturwissenschaften 29(4):49–61. https://doi.org/10.1007/BF01476460. English version: Ref. 29

    Article  Google Scholar 

  29. Köhler A, Loos W (1947) The phase-contrast method and its application in microscopy. Textile Res J 17(2):82–95. https://doi.org/10.1177/004051754701700203

    Article  Google Scholar 

  30. Curl CL, Harris T, Harris PJ, Allman BE, Bellair CJ, Steward AG, Delbridge LMD (2004) Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ. Pflügers Arch (Eur J Physiol) 448(4):462–468. https://doi.org/10.1007/s00424-004-1248-7

    Article  CAS  Google Scholar 

  31. Otaki T (2000 and 2001) Artifact halo reduction in phase contrast microscopy using apodization. Opt Rev 7(2):119–122 and 8(4):284–286. https://doi.org/10.1007/s10043-000-0119-5, https://doi.org/10.1007/s10043-001-0284-1

  32. Ellis GW (1988) Scanned aperture light microscopy. In: 46th Annual Meeting of the Electron Microscopy Society of America, Milwaukee (WI, USA), 7–12 Aug 1988. Proceedings (Bailey GW, ed), pp 48–49 (San Francisco Press, San Francisco). Brief version published in: Cell Motil Cytoskel 10(1-2):342. https://doi.org/10.1002/cm.970100138

    Article  Google Scholar 

  33. Bratuscheck K (1892) Die Lichtstärke-Aenderungen nach verschiedenen Schwingungsrichtungen in Linsensystemen von grossem Oeffnungswinkel mit Beziehung zur mikroskopischen Abbildung. Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik 9(2):145–160. https://biodiversitylibrary.org/page/4625575

  34. Hohman B, Keller E (2001) VAREL: a new contrasting method for microscopy. Biomedical Products (renamed to Bioscience Technology), 1st January issue

    Google Scholar 

  35. Beyer H (1953). Untersuchungen über den Einfluß der Gestalt der Aperturblende auf die mikroskopische Abbildung beim Phasenkontrastverfahren. In: Jenaer Jahrbuch 1953, pp 162–209. VEB Carl Zeiss Jena and VEB Gustav Fisher, Jena

    Google Scholar 

  36. Peshkov ML (1955) A new type of objectives for anoptral microscopy, utilizing an opening, and a brief analysis of the principle of their operation. Biol Bull Rev (Moscow) 40(3):372–378 (Uspekhi Sovremennoi Biologii, article in Russian)

    Google Scholar 

  37. Piper J (2010) Condenser aperture reduction phase contrast: a new technique for improved imaging in light microscopy. J Adv Microsc Res 5(1):1–10. https://doi.org/10.1166/jamr.2010.1018

    Article  Google Scholar 

  38. Soran V, Diaconeasa B (1957) The ultra-anoptral microscope: an improvement of Wilska’s method. Naturwissenschaften 44(17):465. https://doi.org/10.1007/BF00640884

    Article  Google Scholar 

  39. Burch CR, Stock JPP (1942) Phase-contrast microscopy. J Sci Instrum 19(5):71–75. https://doi.org/10.1088/0950-7671/19/5/302

    Article  Google Scholar 

  40. Rheinberg J (1904 and 1905) On the influence on images of gratings of phase differences amongst their spectra. J Roy Microsc Soc (volumes not numbered) Pt4:388–390 and Pt2:152–155. https://biodiversitylibrary.org/page/2178964, https://biodiversitylibrary.org/page/2174836

  41. Conrady A (1905) An experimental proof of phase reversal in diffraction spectra. J Roy Microsc Soc Pt2:150–152. https://biodiversitylibrary.org/page/2174834

  42. Katoh K, Otaki T, Suzuki M (2004) Apodized phase contrast microscopy. Seibutsu Butsuri (“Biophysics”) 44(6):260–264. https://doi.org/10.2142/biophys.44.260

    Article  CAS  Google Scholar 

  43. Nakamura K (1969) Optical microscope (in Japanese). In: Biophysical Society of Japan (ed) Saibou seibutsu butsuri kenkyu-ho (“Research methods in cell biophysics”). Yoshioka Shoten (Maruzen Press), Kyoto, pp 1–130

    Google Scholar 

  44. Pluta M (1989) Simplified polanret system for microscopy. Appl Optics 28(8):1453–1466. https://doi.org/10.1364/AO.28.001453

    Article  CAS  Google Scholar 

  45. Bretschneider F, Teunis PFM (1994) Reduced-carrier single-sideband microscopy: a powerful method for the observation of transparent microscopic objects. J Microsc (Oxf) 175(Pt2):121–134. https://doi.org/10.1111/j.1365-2818.1994.tb03475.x

    Article  Google Scholar 

  46. Stankewitz H-W (1998) Process and device for contrasting objects to be microscopically examined. USA patent US5708526. https://patents.google.com/patent/US5708526

  47. Takaoka H (1999 and 2000) Optical microscope which has optical modulation elements. USA patents US5969853 (https://patents.google.com/patent/US5969853) and US6130776 (https://patents.google.com/patent/US6130776)

  48. Brief J (2005) Minimal dezentriert Phasenkontrast—Eine sehr einfache Methode zur Kontrastverbesserung bei hoher Vergrößerung. Mikrokosmos 94(4):203–205. www.zobodat.at/pdf/Mikrokosmos_94_4_0001.pdf

    Google Scholar 

  49. Piper J (2007) Relief phase contrast: a new technique for phase-contrast light microscopy. Microsc Analysis 21(4):9–12. https://microscopy-analysis.com/magazine (issue 4 = July)

    Google Scholar 

  50. Humphrey GK, Goodale MA, Bowen CV, Gati JS, Vilis T, Rutt BK, Menon RS (1997) Differences in perceived shape from shading correlate with activity in early visual areas. Curr Biol 7(2):144–147. https://doi.org/10.1016/S0960-9822(06)00058-3

    Article  CAS  PubMed  Google Scholar 

  51. Sun J, Perona P (1998) Where is the sun? Nat Neurosci 1(3):183–184. https://doi.org/10.1038/630

    Article  CAS  PubMed  Google Scholar 

  52. Otaki T (2001) Phase object observation device. Japan patent application JP2001194592A (https://patents.google.com/patent/JP2001194592A)

  53. Otaki T (2001) Phase contrast observation device. USA patent US6317261B1 (https://patents.google.com/patent/US6317261B1)

  54. Katoh K, Otaki T (2006) Imaging living samples with apodized phase contrast microscopy, a novel phase contrast microscopy. In 16th Intnl Microsc Congr (IMC16), Sapporo, Japan, 3–8 Sept 2006. Proceedings, p 64

    Google Scholar 

  55. Xu R (2002) Particle characterization: light scattering methods. Kluwer, New York. ISBN: 1402003579

    Google Scholar 

  56. Maurer C, Jesacher A, Bernet S, Ritsch-Marte M (2008) Phase contrast microscopy with full numerical aperture illumination. Opt Express 16(24):19821–19829. https://doi.org/10.1364/OE.16.019821

    Article  PubMed  Google Scholar 

  57. Clark SG, Chiu C (2003) C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development 130(16):3781–3794. https://doi.org/10.1242/dev.00571

    Article  CAS  PubMed  Google Scholar 

  58. Lai C-C, Hong K, Kinnell M, Chalfie M, Driscoll M (1996) Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J Cell Biol 133(5):1071–1081. https://doi.org/10.1083/jcb.133.5.1071

    Article  CAS  PubMed  Google Scholar 

  59. Danev R, Nagayama K (2006) Applicability of thin film phase plates in biological electron microscopy. Biophysics 2:35–43. https://doi.org/10.2142/biophysics.2.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nagayama K (2008) Development of phase plates for electron microscopes and their biological application. Eur Biophys J 37(4):345–358. https://doi.org/10.1007/s00249-008-0264-5

    Article  PubMed  Google Scholar 

  61. Danev R, Okawara H, Usuda N, Kametani K, Nagayama K (2002) A novel phase-contrast transmission electron microscopy producing high-contrast topographic images of weak objects. J Biol Phys 28(4):627–635. https://doi.org/10.1023/A:1021234621466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danev R, Nagayama K (2008) Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struct Biol 161(2):211–218. https://doi.org/10.1016/j.jsb.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  63. Danev R, Kanamaru S, Marko M, Nagayama K (2010) Zernike phase contrast cryo-electron tomography. J Struct Biol 171(2):174–181. https://doi.org/10.1016/j.jsb.2010.03.013

    Article  PubMed  Google Scholar 

  64. Hopkins HH (1953) A note on the theory of phase-contrast images. Proc Phys Soc B 66(4):331–333. https://doi.org/10.1088/0370-1301/66/4/411

    Article  Google Scholar 

  65. Beleggia M (2008) A formula for the image intensity of phase objects in Zernike mode. Ultramicroscopy 108(9):953–958. https://doi.org/10.1016/j.ultramic.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  66. Danev R, Glaeser MG, Nagayama K (2009) Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109(4):312–325. https://doi.org/10.1016/j.ultramic.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  67. Westneat MW, Socha JJ, Lee W-K (2008) Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu Rev Physiol 70:119–142. https://doi.org/10.1146/annurev.physiol.70.113006.100434

    Article  CAS  PubMed  Google Scholar 

  68. Fitzgerald R (2000) Phase-sensitive X-ray imaging. Physics Today 53(7):23–26. 53(11):82. https://doi.org/10.1063/1.1292471, https://doi.org/10.1063/1.2405518

  69. Beckmann F, Heise K, Kölsch B, Bonse U, Rajewsky MF, Bartscher M, Biermann T (1999) Three-dimensional imaging of nerve tissue by X-ray phase-contrast microtomography. Biophys J 76(1):98–102. https://doi.org/10.1016/S0006-3495(99)77181-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee W-K, Cloetens P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc (Oxf) 227(Pt1):51–71. https://doi.org/10.1111/j.1365-2818.2007.01785.x

    Article  Google Scholar 

Note Added in Proof

  1. Kubbinga H (2012–2016) Collected papers of Frits Zernike (1888–1966). vol I–IV. Grøningen University Press, Grøningen. ISBN: 9789081442831. https://openlibrary.org/books/OL25241270M

  2. Brice AT (1953) On the Zernike phase-contrast method of microscopy. Amer Biol Teacher 15(5):124–128. https://doi.org/10.2307/4438501

  3. Jacquez JA, Biesele JJ (1954) A study of Michel’s film on meiosis in Psophus stridulus L. Exp Cell Res 6(1):17–29. https://doi.org/10.1016/0014-4827(54)90144-5

  4. Melly MA, Thomison JB, Rogers DE (1960) Fate of staphylococci within human leukocytes. J Exp Med 112(6):1121–1130. https://doi.org/10.1084/jem.112.6.1121

  5. Rogers DE (1950s) Neutrophil chasing bacteria (video). https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria (comments by Thomas S. Stossel and Mark A. Hill)

Download references

Acknowledgments

The authors are grateful to Satoe Ebihara and Motomichi Doi (Biomedical Research Institute AIST, Tsukuba, Japan) for preparing specimens of NG108 cells and Caenorhabditis elegans, to W. Brad Amos (MRC Laboratory of Molecular Biology, Cambridge, UK) and Kuniyaki Nagayama (Okazaki Institute for Integrative Bioscience, Japan) for helpful comments. Petr Pithart (Lambda, Prague); Yoshiro Oikawa, Hiroyasu Tanaka, Masaaki Tamura, Ichiro Sase, Takaaki Okamoto, and Yoshimitsu Tuboi (Nikon, Japan); and Ivan Rozkošný (Nikon, Prague) kindly lent their microscopes. RP was supported by Ministry of Education projects “Chiral Microscopy” (LTC17012) and “ChemBioDrug”,Footnote 10 KK by System Development Program for Advanced Measuring Technology (SENTAN) of Japan Science & Technology Agency (JST), and ZH by The Stentor Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Pelc .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Time-lapse recording of unstained chromosomes during meiosis (from Ref. [13]) (MPG 9060 kb)

Phase contrast TEM tomography of T4 bacteriophages (from Ref. [63]) (MPG 9060 kb)

Conventional TEM tomography of T4 bacteriophages (from Ref. [63]) (MPG 9060 kb)

Supplement S3

Variable and external-phase-plate (optical-relay) setups (1936 to 1970s) (PDF 1849 kb)

Supplement S4

Early phase contrast microscopes (1940s and 1950s) (PDF 1175 kb)

Supplement S5

Early phase contrast microscopy literature (1892–1965) (PDF 289 kb)

Glossary

Terminology in phase-contrast microscopy has not been entirely consistent over time. An additional complexity arises when various imaging modes are combined (e.g., relief phase contrast), and a specific terminology is used in electron microscopy.

Amplitude objects

Objects that attenuate light intensity (e.g., opaque granules or stained cells or tissue sections). To visualize them, phase contrast or other ways of ►optical contrasting (staining) is unnecessary. However, such objects typically also induce phase shifts (phase-amplitude objects); cf. ►phase objects.

Anoptral contrast

A variant of negative phase contrast (Reichert) that employed phase plates made of soot featuring smaller reflections than metallic coatings common in other microscopes.

Apodized phase contrast

Phase contrast enhanced by apodization. Neutral density (i.e., non–phase-shifting) filters of annular shape are placed immediately next to the phase annulus. Either two or multiple (graded-transmittance) apodization annuli may be used; only the former option is available on a commercial basis. Apodizing filters are sometimes referred to as modulation filters, the latter being a more general term.

A­type/B­type phase plate

Obsolete terms (coined by American Optical [Spencer] Co) meaning that a light-attenuating (metallic) layer is coated onto the ►conjugate/complementary area of the ►phase plate.

B­minus phase plate

An obsolete term for a ►phase plate yielding ►positive phase contrast (also referred to as ►dark contrast), in which neither the ►conjugate nor complementary area is light-attenuating. Cf. ► Zernike phase contrast.

Conjugate/complementary area

Parts of a ►phase plate. The conjugate area (passing mainly direct or undiffracted light) is optically conjugate with the annular opening in the condenser diaphragm. The complementary area (passing diffracted light only) is the rest of the ►phase plate.

Conventional phase contrast

Non-apodized, non-relief phase contrast in light microscopy. In electron microscopy, phase-contrast observation is relatively new, thus the term “conventional” is irrelevant.

Dark/bright contrast (or “dark/bright phase”)

Older terms for ►positive/negative phase contrast, originally coined by American Optical (Spencer) Co and nowadays used by Nikon. The dark/bright contrast terminology is consistent with sufficiently thin phase-retarding objects such as smaller cells in water. For example, dark-low-low (DLL), dark-low (DL), or dark-medium (DM) denotes a positive phase-contrast objective with a phase annulus of very low, low, or medium attenuation (transmittance ca. 45%, 25%, or 14%, respectively), rendering thin enough phase-retarding objects as less or more dark on bright background. The DL and DM objectives are also available in ►apodized versions (ADL and ADM). An ADH (apodized–dark–high) objective features transmittance of only ca. 6% and the highest phase-visualization sensitivity. Bright-medium (BM) denotes a negative phase-contrast objective with a medium-attenuation phase annulus (transmittance ca. 14%). Objectives currently made by Zeiss are mostly of positive type (marked “Ph1,” “Ph2,” etc.), and only rarely negative (“Ph2­”). A lens with two phase annuli (positive and negative) is also available (“Ph1 Ph2­”). In Olympus’s long-barrel (LB) series objectives (no longer commercially available), the following designations were used: PL/PLL (positive low/low­low) and NM/NH (negative medium/high). Objectives that used to be made by Leitz (“Pv” series) were either of “n” or “h” (positive), or “­h” (negative) type, with transmittance approximately equivalent to that of DL or DM, or BM lenses, respectively. Cf. ►anoptral contrast.

Defocus phase contrast

A term sometimes used in electron microscopy. Its meaning is the same as what is called “imitation phase contrast” in the present chapter, as achieved by slightly defocusing a bright-field image.

Hilbert differential contrast

A term sometimes used to denote a phase-contrast mode in electron microscopy, employing a π­type (λ/2 or 180° phase shift), asymmetric phase plate, suitable for relatively thicker objects (e.g., ultrathin sections or whole ice-embedded bacterial cells). Earlier, it was sometimes referred to as “Difference contrast TEM” (DTEM). Images are rendered in a quasi­3D appearance, similar to the ►relief phase contrast ones in light microscopy.

Hoffman modulation contrast

One of the so-called ►schlieren imaging modes. It employs an asymmetric slit diaphragm in the condenser and a graded-transmittance filter (“modulator”) in the objective. “Nikon Advanced Modulation Contrast” (NAMC) and Olympus’s “Relief Contrast” are its near-identical, double-slit variations; cf. ►relief contrast. Leica’s “Integrated (or Intermediate) Modulation Contrast” (IMC) allows for the modulator to be easily removed from the optical path as it is placed outside the objective (an ►optical-relay setup). A more simple variant, “Emboss Contrast” has been introduced by Nikon.

Optical contrasting (staining)

Visualization of refractive index differences within a specimen. The relevant imaging modalities include dark field (including ►Rheinberg illumination), ►Hoffman modulation contrast (and any other ►schlieren imaging mode, e.g., ►relief contrast), phase contrast, interference contrast, differential interference contrast (DIC) after Smith/Nomarski, and polarization microscopy. A narrower definition of “optical staining” only refers to the use of color filters in the optical path of the microscope, which however does not necessarily enhance the contrast in the images.

Optical path difference (OPD, proportional to object-to-medium phase shift)

Physical thickness (d) of the object (e.g., a cell) multiplied by a refractive index difference (n1 − n2) between the medium surrounding it (e.g., a physiological solution) and the object itself. For example, OPD of −λ/6 translates to an object-to-medium phase shift of −60°. Optical thickness (or optical path length) is defined as n2d in non-absorbing objects. Often used (incorrectly) instead of OPD.

Optical-relay setup

Seepupil-projection (optical-relay) setup.

Phase objects

Objects that shift only the phase of light, without attenuating its amplitude (e.g., unstained cells or tissue sections). Under a properly adjusted bright-field illumination, such objects are almost invisible. Chemical staining (as in classical histology or fluorescence microscopy) may be used to visualize them. An appropriate optical setup enabling ►optical contrasting (staining) represents a less invasive alternative.

Phase plate (also referred to as “diffraction plate”)

A glass plate at the objective back focal (transform) plane, with a thin coating of dielectric (i.e., phase-shifting) material either at the ►conjugate or complementary area. As the transform plane is often located between tightly packed lenses compounding the objective the coating is deposited directly on one of the lenses in that case. Cf. ►A­type/B­type phase plate.

Positive/negative phase contrast

Imaging modes rendering thin enough phase-retarding (phase-advancing) objects as dark/bright (bright/dark), relative to the background. The phase annulus advances/retards the direct light, typically by 90° (λ/4). At a phase shift of 180° (λ/2) in the phase annulus, the two terms lose their meaning as positive and negative phase contrast yield identical images. Cf. ►anoptral contrast and ►dark/bright contrast.

Pupil-projection (optical-relay) setup

A system in which the objective back focal plane (approx. the exit pupil in low-power objectives) is optically relayed (duplicated) to a more accessible location. A ►phase plate may then be placed in an external, detachable unit rather than in the objective lens itself. This is of advantage when switching, for example, between total internal reflection fluorescence (TIRF) and phase-contrast modes as the need to exchange the objective lens is eliminated. Such systems are offered by Leica (“Integrated [or Intermediate] Phase Contrast,” IPH) and Nikon, and used to be available on Zeiss microscopes.

Relief contrast

One of the so-called ►schlieren imaging modes rendering ►phase objects in a relief-like (quasi­3D) appearance. It employs an asymmetric cut-off diaphragm in the condenser (off­axis illumination). A refined form of relief contrast is referred to as ►Hoffman modulation contrast.

Relief phase contrast

A combination of ►relief contrast and phase contrast, available from Zeiss as “variable relief” (VAREL) contrast. Not to be confused with ►variable phase contrast.

Rheinberg illumination

A refined form of dark-field illumination, in that the background is not dark but colored. Objects illuminated by another (contrasting) color are well visible.

Schlieren imaging

A collective term for ►optical contrasting (staining) modes employing one or two asymmetrical (relief, cutoff) diaphragms in the optical path (e.g., ►Hoffman modulation contrast and ►relief contrast). “Schlieren” (from German, meaning “streaks”) denotes shading patterns in the images which thus attain a relief-like (quasi-3D) appearance.

Variable phase contrast

A system enabling a gradual adjustment of the phase shift and transmittance, with a set of optical elements that emulate the ►phase plate. The most popular device of this kind is called “Polanret” by American Optical (Spencer) Co. This and other similar devices are no longer commercially available. An equivalent in electron microscopy is represented by a system employing an electrostatic (tunable) phase plate. Cf. ►relief phase contrast.

Zernike phase contrast

A term sometimes used to denote a phase-contrast mode in electron microscopy, employing a π/2­type (λ/4 or 90° phase shift), axially symmetrical phase plate with a tiny central opening for unscattered electrons (an equivalent of direct or undiffracted light in light microscopy). It is particularly suitable for very thin objects (e.g., protein particles). An equivalent of ►B-minus phase plate in light microscopy.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pelc, R., Hostounský, Z., Otaki, T., Katoh, K. (2020). Conventional, Apodized, and Relief Phase-Contrast Microscopy. In: Pelc, R., Walz, W., Doucette, J.R. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0428-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0428-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0426-7

  • Online ISBN: 978-1-0716-0428-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics