Acta Chir Orthop Traumatol Cech. 2019; 86(6):397-402 | DOI: 10.55095/achot2019/067

The Risk of Total Joint Replacement Infectious Complications in Relation to the UHMWPE Particle Adhesion AreaOriginal papers

P. FULÍN1,*, M. ŠLOUF2, S. KREJČÍKOVÁ2, J. HROMÁDKOVÁ2, D. JAHODA1, D. POKORNÝ1
1 I. ortopedická klinika 1. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice v Motole, Praha
2 Ústav makromolekulární chemie Akademie věd České republiky, Praha

PURPOSE OF THE STUDY:
Periprosthetic joint infection is a major complication which in most of the cases requires a long-term administration of antibiotics and often necessitates undergoing multiple challenging surgeries. Bacterial adhesion to foreign material is one of the key risk factors associated with periprosthetic joint infection. The foreign material with large adhesion area might be also the UHMWPE (Ultrahigh molecular weight polyethylene) particles released during the wear process from the surface of articulating components. The purpose of this study is to evaluate potential adhesion areas of wear particles in relation to diverse distribution of the size and shapes of wear particles in periprosthetic tissue and to assess an increase in the risk of infectious complications associated with an increase in the adhesion area of wear particles.

MATERIAL AND METHODS:
The size and morphology of model and real UHMWPE particles were determined with the use of light microscopy and scanning electron microscopy. By determining the morphological descriptors, the surfaces of individual particles for different distributions of polyethylene particles were calculated. When measuring the model wear particles, 6 model situations were simulated, in which comparisons with the control measurement by the BET (Brunauer-Emmet-Teller) method were made.

RESULTS:
The variability of individual morphological descriptors demonstrates the effect on the total surface of particles. The calculated coefficient defines how many times the particle surface increases when corrected to the given descriptor (elongation, flattening, roughness, porosity). The total area of real wear particles at 1 year is 4,622 cm2, at 20 years it is 92,440 cm2. Based on our calculations, the area of particles where a biofilm is actually formed (approximately 50 bacteria may adhere to a particle of 3μm in diameter) is 809.5 cm2 at 1 year and 16,190 cm2 at 20 years.

DISCUSSION:
According to the measurements, the size of the potential adhesion area of metal parts and polyethylene particles becomes equal already after several weeks of endoprosthesis usage and after a few years it is many times larger. The question is whether the risk of bacterial adhesion, i.e. also the risk of infectious complications of TEP actually increases. The clinical practice suggests that the number of infections e.g. 10, 15 or 20 years after the primary implantation is not statistically higher, despite the confirmed growth of potential adhesion area in the form of UHMWPE particles. This fact could be explained by a partially equal regulatory pathway of infection and polyethylene disease. The immune system stimulated by wear particles might better resist the hematogenic infection.

CONCLUSIONS:
The study outcomes clearly indicate that the area of polyethylene wear particles considerably increases over time. In spite of the fact that only approximately 10% of wear particles show parameters (also with respect to the size of particles and bacteria) for potential bacterial adhesion, this area is many times larger than the area of metal parts of the endoprosthesis.

Keywords: UHMWPE particle, adhesion, biofilm, wear, TJR infection

Published: December 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
FULÍN P, ŠLOUF M, KREJČÍKOVÁ S, HROMÁDKOVÁ J, JAHODA D, POKORNÝ D. The Risk of Total Joint Replacement Infectious Complications in Relation to the UHMWPE Particle Adhesion Area. Acta Chir Orthop Traumatol Cech.. 2019;86(6):397-402. doi: 10.55095/achot2019/067. PubMed PMID: 31941566.
Download citation

References

  1. Ballay R, Landor I, Ruzicka F, Melichercik P, Tomaides J, Jahoda D. Alloplastic materials and their propensity to bacterial colonisation. Acta Chir Orthop Traumatol Cech. 2016;83:163-168. Go to original source... Go to PubMed...
  2. Bayoudh S, Othmane A, Mora L,Ben Ouada H. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Colloids and Surfaces B: Biointerfaces. 2009;73:1-9. Go to original source... Go to PubMed...
  3. Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simin SI, Cheung AL, Finerman GA, Lieberman JR, Adams JS, Miller LS. A mouse model of post-arthroplasty staphylococcus aureus joint infectin to evaluate in vivo the efficacy of antimicrobial implant coatings. Plos One. 2010;5:art.no.e12580. Go to original source... Go to PubMed...
  4. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309-319. Go to original source...
  5. J. Bacterial adhesion to surfaces. Bachelor thesis. 2016;1-35.
  6. Fulin P, Pokorny D, Slouf M, Lapcikova M, Pavlova E, Zolotarevova E. Metoda MORF pro sledování velikostí a tvarů otěrových mikro- a nanočástic UHMWPE v periprotetických tkáních. Acta Chir Orthop Traumatol Cech. 2011;78:131-137. Go to original source... Go to PubMed...
  7. Gallo J, Slouf M, Goodman SB. The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res B Appl Biomater. 2010;94:171-177. Go to original source... Go to PubMed...
  8. Gallo J, Vaculova J, Goodman SB, Konttinen YT, Thyssen JP. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater. 2014;10:2354-2366. Go to original source... Go to PubMed...
  9. Gallo J, Raska M, Mrazek F, Petrek M. Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis. Physiol Res. 2008;57:339-349. Go to original source... Go to PubMed...
  10. Garrido KD, Palacios RJS, Lee C, Kang S. Impact of conditioning film on the initial adhesion of E. coli on polysulfone ultrafiltration membrane. Journal of Industrial and Engineering Chemistry. 2014;20:1438-1443. Go to original source...
  11. Hoenders CSM, Harmsen MC, van Luyn MJA. The local inflammatory environment and microorganisms in ''aseptic'' loosening of hip prostheses. J Biomed Mater Res B: Appl Biomater. 2008;86:291-301. Go to original source... Go to PubMed...
  12. Holt JG et al. Bergey's manual of determinative bacteriology. 9th ed., Williams & Wilkins, Baltimore, 1994.
  13. Jahoda D, Sosna A, Nyč O. et al. Infekční komplikace v ortopedii. Triton, Praha, 2008.
  14. Kurtz SM. UHMWPE biomaterials handbook. 3nd ed., Elsevier, Academic Press, London, 2016.
  15. Landor I, Vavřík P, Gallo J, Sosna A et al. Revizní operace totálních náhrad kyčelního kloubu. Maxdorf, Praha, 2012.
  16. Lapcikova M, Slouf M, Dybal J, Zolotarevova E, Entlicher G, Pokorny D, Gallo J, Sosna A. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo. Wear. 2009;266:349-355. Go to original source...
  17. McKellop HA, Campbell P, Park SH, Schmalzried TP, Grigoris P, Amstutz HC, Sarmiento A. The origin of submicron polyethylenewear debris in total hip arthroplasty. Clin Orthop Relat Res. 1995;311:3-20.
  18. Perni S, Preedy EC, Prokopovich P. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Colloid Interface Sci. 2014;206: 265-274. Go to original source... Go to PubMed...
  19. Pokorný D, Šlouf M, Horák Z, Jahoda D, Entlicher G, Eklová S, Sosna A. Metodika sledování distribuce otěrových částic UHMWPE v okolních tkáních u TEP kyčelního kloubu. Acta Chir Orthop Traumatol Cech. 2006;73:243-250. Go to original source... Go to PubMed...
  20. Pokorný D, Šlouf M, Veselý F, Fulín P, Jahoda D, Sosna A. Distribuce otěrových částic UHMWPE v periprotetických tkáních u TEP kyčelního kloubu. Acta Chir Orthop Traumatol Cech. 2010;77:87-92. Go to original source... Go to PubMed...
  21. Rafiq I, Gambhir AK, Wroblewski BM, Kay PR. The microbiology of infected hip arthroplasty. Int Orthop. 2006;30 (6): 532-535. Go to original source... Go to PubMed...
  22. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176-190. Go to original source... Go to PubMed...
  23. Slouf M, Eklova S, Kumstatova J, Berger S, Synkova H, Sosna A, Pokorny D, Spundova M, Entlicher G. Isolation, characterization and quantification of polyethylene wear debris from periprosthetic tissues around total joint replacements. Wear. 2007;262:1171-1181. Go to original source...
  24. Slouf M, Ostafinska A, Nevoralova M, Fortelny I. Morphological analysis of polymer systems with broad particle size distribution. Polym Test. 2015;41:8-16. Go to original source...
  25. Slouf M, Pokorny D, Entlicher G, Dybal J, Synkova H, Lapcikova M, Fejfarkova Z, Spundova M, Vesely F, Sosna A. Quantification of UHMWPE wear in periprosthetic tissues of hip arthroplasty: Description of a new method based on IR and comparison with radiographic appearance. Wear. 2008;265:674-684. Go to original source...
  26. Sosna A, Radonský T, Pokorný D, Veigl D, Horák Z, Jahoda D. Polyetylénová choroba. Acta Chir Orthop Traumatol Cech. 2003;70:6-16. Go to PubMed...
  27. Yoda I, Koseki H, Tomita M, Shida T, Horiuchi H, Sakoda H, Osaki M. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol. 2014;14:234. Go to original source... Go to PubMed...