Skip to main content

Small Péclet Number Approximation as a Singular Limit of the Full Navier-Stokes-Fourier System with Radiation

  • Chapter
New Directions in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1128 Accesses

Abstract

We study a singular limit for the scaled Navier-Stokes-Fourier system, where the Mach, Froude, and Péclet numbers tend to zero. As a limit problem, we recover a model proposed by Chandrasekhar as a simple alternative to the Oberbeck-Boussinesq system applicable in stellar radiative zones.

The work of E.F. was supported by Grant 201/05/0164 of GA CR in the general framework of research programmes supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503 and partially by the Université du Sud Toulon-Var The work of A.N. was supported by the Nečas Center for Mathematical Modeling (LC06052) financed by MSMT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Alazard. Low Mach number flows, and combustion. SIAM J. Math. Anal., 38:1188–1213, 2006.

    Article  MathSciNet  Google Scholar 

  2. T. Alazard. Low Mach number limit of the full Navier-Stokes equations. Arch. Rational Mech. Anal., 180:1–73, 2006.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. A. Battaner. Astrophysical fluid dynamics. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  4. S.E. Bechtel, F.J. Rooney, and M.G. Forest. Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fluids. J. Appl. Mech., 72:299–300, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bresch, B. Desjardins, E. Grenier, and C.-K. Lin. Low Mach number limit of viscous polytropic flows: Formal asymptotic in the periodic case. Studies in Appl. Math., 109:125–149, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford, 1961.

    MATH  Google Scholar 

  7. R. Danchin. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math., 124:1153–1219, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Danchin. Low Mach number limit for viscous compressible flows. M2AN Math. Model Numer. Anal., 39:459–475, 2005.

    Article  MathSciNet  Google Scholar 

  9. B. Desjardins, E. Grenier, P.-L. Lions, and N. Masmoudi. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl., 78:461–471, 1999.

    Article  MathSciNet  Google Scholar 

  10. S. Eliezer, A. Ghatak, and H. Hora. An introduction to equations of states, theory and applications. Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  11. E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2003.

    Book  Google Scholar 

  12. E. Feireisl, J. Málek, A. Novotný, and I. Straškraba. Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Commun. Partial Differential Equations 33:157–176, 2008.

    Article  MATH  Google Scholar 

  13. E. Feireisl and A. Novotný. On a simple model of reacting compressible flows arising in astrophysics. Proc. Royal Soc. Edinburgh, 135A:1169–1194, 2005.

    Article  Google Scholar 

  14. E. Feireisl and H. Petzeltová. On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations, 25(3–4):755–767, 2000.

    Article  MATH  Google Scholar 

  15. P. Gilman and G.A. Glatzmaier. Compressible convection in a rotating spherical shell, I. Anelastic approximation. Astrophys. J. Suppl., 45:335–388, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  16. D.O. Gough. The anelastic approximation for thermal convection. J. Atmos. Sci., 26:448–456, 1969.

    Article  ADS  Google Scholar 

  17. D. Hoff. The zero Mach number limit of compressible flows. Commun. Math. Phys., 192:543–554, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math., 34:481–524, 1981.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. R. Klein, N. Botta, T. Schneider, C.D. Munz, S. Roller, A. Meister, L. Hoffmann, and T. Sonar. Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math., 39:261–343, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Lignières. The small Péclet number approximation in stellar radiative zones. Astronomy and Astrophysics, arXiv:astro-ph/9908182 v 1, 1999.

    Google Scholar 

  21. P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., 77:585–627, 1998.

    MATH  MathSciNet  Google Scholar 

  22. N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of Differential Equations, III, C Dafermos, E. Feireisl Eds., Elsevier, Amsterdam, 2006.

    Google Scholar 

  23. N. Masmoudi. Rigorous derivation of the anelastic approximation. J. Math. Pures Appl., 88:230–240, 2007.

    MATH  MathSciNet  Google Scholar 

  24. I. Müller and T. Ruggeri. Rational extended thermodynamics. Springer Tracts in Natural Philosophy 37, Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  25. J. Oxenius. Kinetic theory of particles and photons. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  26. S. Schochet. Fast singular limits of hyperbolic PDE’s. J. Differential Equations, 114:476–512, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Schochet. The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal., 39:441–458, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  28. C.H. Wilcox. Sound propagation in stratified fluids. Appl. Math. Ser. 50, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Alexander Kazhikov

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Feireisl, E., Novotný, A. (2009). Small Péclet Number Approximation as a Singular Limit of the Full Navier-Stokes-Fourier System with Radiation. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_8

Download citation

Publish with us

Policies and ethics