Skip to main content
Log in

Ion channeling study of lattice distortions in chromium-doped SrTiO3 crystals

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of ion channeling studies of lattice distortions in SrTiO3: Cr single crystals are presented. Two types of single crystals containing the same amount of Cr impurities but differing in stoichiometry have been investigated. The single crystals grown by the Verneuil method have the compositions of standard-grown SrTiO3: Cr (0.05 at % Cr), whereas the single crystals grown with a strontium deficiency and a chromium compensating amount have the composition Sr0.9995TiO3 (0.05 at % Cr). Analysis of the angular channeling spectra indicates that, in crystals of both types, the main defects are Cr impurities located in octahedral sites. In the SrTiO3: Cr crystals, impurity atoms manifest themselves as Cr4+ with tetragonal Jahn-Teller distortions of the surrounding lattice. In the Sr0.9995TiO3: Cr crystals grown with a Sr deficiency, the characteristic displacements of Ti ions in the third coordination sphere of the Jahn-Teller center Cr4+ exhibit the effect of interaction of the center with a neighboring vacancy in the Sr sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Stokowski and A. L. Schawlow, Phys. Rev. 178, 457 (1969).

    Article  ADS  Google Scholar 

  2. V. Vikhnin, V. Trepakov, F. Smutny, and L. Jastrabik, Ferroelectrics 176, 7 (1996).

    Article  Google Scholar 

  3. K. A. Mueller, in Proceedings of the First International Conference on Paramagnetic Resonance, Jerusalem, July 16–20, 1962, Ed. by W. Low (Academic, New York, 1963), p. 17.

  4. H. D. Meierling, Z. Naturforsch., A: Phys. Sci. 24, 1662 (1969).

    ADS  Google Scholar 

  5. A. K. Mueller, in Proceedings of the 16th Collogue AMPERE: International Conference on Magnetic Resonance and Related Phenomena, Bucharest, September 1–5, 1970, p. 170.

  6. H. D. Meierling, Phys. Status Solidi B 43, 191 (1971).

    Article  ADS  Google Scholar 

  7. A. Lagendijk, R. J. Morel, M. Glasbeek, and J. D. W. van Voorst, Chem. Phys. Lett. 12, 518 (1972).

    Article  ADS  Google Scholar 

  8. H. J. de Jong and M. Glasbeek, Solid State Commun. 19, 1197 (1976).

    Article  Google Scholar 

  9. K. A. Mueller, W. Blazey, and Th. W. Kool, Solid State Commun. 85, 381 (1993).

    Article  ADS  Google Scholar 

  10. Th. W. Kool, H. J. de Jong, and M. Glassbeck, J. Phys.: Condens. Matter 6, 1571 (1994).

    Article  ADS  Google Scholar 

  11. S. A. Basun, U. Bianchi, V. E. Bursian, A. A. Kaplyanskii, W. Kleemann, L. S. Sochava, and V. S. Vikhnin, Ferroelectrics 183, 255 (1966).

    Article  Google Scholar 

  12. O. Kvyatkovskii, Phys. Solid State 54(7), 1397 (2012).

    Article  ADS  Google Scholar 

  13. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).

    Article  ADS  Google Scholar 

  14. Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, and S. J. Wind, Appl. Phys. Lett. 78, 3738 (2001).

    Article  ADS  Google Scholar 

  15. G. I. Meijer, U. Staub, M. Janousch, S. L. Johnson, B. Delley, and T. Neisius, Phys. Rev. B: Condens. Matter 72, 155102 (2005).

    Article  ADS  Google Scholar 

  16. S. F. Alvarado, F. La Mattina, and J. G. Bednorz, Appl. Phys. A: Mater. Sci. Process. 89, 85 (2007).

    Article  Google Scholar 

  17. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreessen, Adv. Mater. (Weinheim) 19, 2232 (2007).

    Article  Google Scholar 

  18. B. T. Phan and J. Lee, Appl. Phys. Lett. 93, 222906 (2008).

    Article  ADS  Google Scholar 

  19. B. P. Andreasson, M. Janousch, U. Staub, and G. I. Meijer, Appl. Phys. Lett. 94, 013513 (2009).

    Article  ADS  Google Scholar 

  20. F. La Mattina, J. G. Bednorz, S. F. Alvarado, A. Shengelaya, and H. Keller, Appl. Phys. Lett. 93, 022102 (2008).

    Article  ADS  Google Scholar 

  21. F. La Mattina, J. G. Bednorz, S. F. Alvarado, A. Shengelaya, K. A. Mueller, and H. Keller, Phys. Rev. B: Condens. Matter 80, 075122 (2009).

    Article  ADS  Google Scholar 

  22. Physical Research, Vol. 6: High-Energy Ion Beam Analysis of Solids, Ed. by K. Gärtner and G. Götz (Akademie, Berlin, 1988).

    Google Scholar 

  23. D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).

    Article  ADS  Google Scholar 

  24. G. N. van den Hoven, A. Polman, E. Alves, M. F. da Silva, A. A. Melo, and J. C. Soares, J. Mater. Res. 12, 1401 (1997).

    Article  ADS  Google Scholar 

  25. K. M. Yu, H. P. Lee, and S. Wang, Appl. Phys. Lett. 56, 1784 (1990).

    Article  ADS  Google Scholar 

  26. H. Kobayashi and W. M. Gibson, Appl. Phys. Lett. 74, 2355 (1999).

    Article  ADS  Google Scholar 

  27. B. de Vries, A. Vantomme, U. Wahl, J. G. Correia, J. P. Araújo, W. Lojkowski, and D. Kolesnikov, J. Appl. Phys. 100, 023531 (2006).

    Article  ADS  Google Scholar 

  28. R. B. Greegor, F. W. Lytle, G. W. Arnold, and R. C. Ewing, J. Non-Cryst. Solids 122, 121 (1990).

    Article  ADS  Google Scholar 

  29. F. Wang, M. Badaye, Y. Yoshida, and T. Morishita, Nucl. Instrum. Methods Phys. Res., Sect. B 118, 547 (1996).

    Article  ADS  Google Scholar 

  30. C. C. Chin and T. Morishita, Appl. Phys. Lett. 66, 317 (1995).

    Article  ADS  Google Scholar 

  31. A. Tkach, P. M. Vilarinho, and A. L. Kholkin, J. Appl. Phys. 101, 084110 (2007).

    Article  ADS  Google Scholar 

  32. A. Tkach, P. M. Vilarinho, D. Nuzhnyy, and J. Petzelt, Acta Mater. 58, 577 (2010).

    Article  Google Scholar 

  33. L. Grabner, Phys. Rev. 177, 1315 (1969).

    Article  ADS  Google Scholar 

  34. A. K. Mueller, in Proceedings of the 16th Congress AMPERE, Bucharest, September 1–5, 1970, Ed. by I. Ursu (Publishing House of the Academy of the Socialist Republic Romania, Bucharest, 1971), p. 170.

  35. H. J. de Jong and M. Glasbeek, Solid State Commun. 19, 1197 (1976).

    Article  Google Scholar 

  36. H. J. de Jong and M. Glassbeck, Solid State Commun. 28, 683 (1978).

    Article  Google Scholar 

  37. Th. W. Kool, H. J. de Jong, and M. Glassbeck, J. Phys.: Condens. Matter 6, 1571 (1994).

    Article  ADS  Google Scholar 

  38. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Material Analysis by Ion Channeling (Academic, New York, 1982).

    Google Scholar 

  39. J. Lindhard, Mat.-Fys. Medd.-K. Dan. Vidensk. Selsk. 34, 14 (1965).

    Google Scholar 

  40. R. P. Rodrigues, H. Chang, D. E. Ellis, and V. P. Dravid, J. Am. Ceram. Soc. 82, 2373 (1999).

    Article  Google Scholar 

  41. S. T. Picraux, J. A. Davies, L. Eriksson, N. G. E. Johansson, and J. W. Mayer, Phys. Rev. 180, 873 (1969).

    Article  ADS  Google Scholar 

  42. W. N. Lawless, Phys. Rev. B: Solid State 17, 1458 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Trepakov.

Additional information

Original Russian Text © V. Lavrentiev, J. Vacik, A. Dejneka, V. Trepakov, L. Jastrabik, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 7, pp. 1333–1338.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrentiev, V., Vacik, J., Dejneka, A. et al. Ion channeling study of lattice distortions in chromium-doped SrTiO3 crystals. Phys. Solid State 55, 1431–1437 (2013). https://doi.org/10.1134/S1063783413070202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413070202

Keywords

Navigation