Skip to main content
Log in

Thermal expansion behaviour of granites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the application of thermomechanical analysis along with thermogravimetric analysis and differential thermal analysis in characterization of thermal expansion behaviour of three granite samples from Czech Republic and two granite samples from India and Italy. The mineralogical composition was carried out by optical microscopy, X-ray diffraction and FTIR spectroscopy. The detailed study has included mainly the effect of granite composition and structure on final thermal expansion and effect of proceeding phase transformation during heat stress of material. The coefficient of thermal expansion showed relatively similar values for all studied granite samples ranged from 35 to 43.10−6 K−1. TMA curves displayed a bit different shapes and characteristics; the final shape probably depends both on the content of quartz and feldspar and on their proportion of the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Homand-Etienne F, Houpert R. Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstr. 1989;26(2):125–34.

    Article  Google Scholar 

  2. Miao SQ, Li HP, Chen G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim. 2014;115(2):1057–63.

    Article  CAS  Google Scholar 

  3. Nishimoto S, Yoshida H. Hydrothermal alteration of deep fractured granite: effect of dissolution and precipitation. Lithos. 2010;115(1–4):153–62.

    Article  CAS  Google Scholar 

  4. Inserra C, Biwa S, Chen Y. Influence of thermal damage on linear and nonlinear acoustic properties of granite. Int J Rock Mech Min Sci. 2013;62:96–104.

    Google Scholar 

  5. Chaki S, Takarli M, Agbodjan WP. Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater. 2008;22:1456–61.

    Article  Google Scholar 

  6. Fokianos K, Sarrou I, Pashalidis I. Increased radiation exposure by granite used as natural tiling rock in Cypriot houses. Radiat Meas. 2007;42(3):446–8.

    Article  CAS  Google Scholar 

  7. Attrill PG, Gibb FG. Partial melting and recrystallization of granite and their application to deep disposal of radioactive waste. Lithos. 2003;67(1–2):103–17.

    Article  CAS  Google Scholar 

  8. Lyubka M, et al. Acoustic emission on melting/solidification of natural granite simulating very deep waste disposal. Nucl Eng Des. 2012;248:329–39.

    Article  Google Scholar 

  9. Glatz JP, Toscano EH, Paghosa G, Nicholl A. Influence of granite on the leaching behaviour of different nuclear waste forms. J Nucl Mater. 1995;223(1):84–9.

    Article  CAS  Google Scholar 

  10. Mata C, et al. A hydro-geochemical analysis of the saturation process with salt water of a bentonite crushed granite rock mixture in an engineered nuclear barrier. Eng Geol. 2005;81(3):227–45.

    Article  Google Scholar 

  11. Villar MV. Infiltration tests on a granite/bentonite mixture: influence of water salinity. Appl Clay Sci. 2006;31(1–2):96–109.

    Article  CAS  Google Scholar 

  12. Cho WJ, Kwon S. Estimation of the thermal properties for partially saturated granite. Eng Geol. 2010;115(1–2):132–8.

    Article  Google Scholar 

  13. Fairhurst C. Nuclear waste disposal and rock mechanics: contributions of the Underground Research Laboratory (URL), Pinawa, Manitoba, Canada. Int J Rock Mech Min Sci. 2004;41(8):1221–7.

    Article  Google Scholar 

  14. Buil B, et al. Modelling of bentonite–granite solutes transfer from an in situ full-scale experiment to simulate a deep geological repository (Grimsel Test Site, Switzerland). Appl Geochem. 2010;25:1797–804.

    Article  CAS  Google Scholar 

  15. Dwivedi RD, et al. Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci. 2008;45:303–15.

    Article  Google Scholar 

  16. Sundberg J. Modelling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository. Int J Rock Mech Min Sci. 2009;46:1042–54.

    Article  Google Scholar 

  17. Arzúa J, Alejano LR, Walton G. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. Int J Rock Mech Min Sci. 2014;69:93–104.

    Google Scholar 

  18. Liu J, et al. Characterizing the mechanical tensile behavior of Beishan granite with different experimental methods. Int J Rock Mech Min Sci. 2014;69:50–8.

    Google Scholar 

  19. Vasconcelos G, et al. Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics. 2008;48(5):453–66.

    Article  CAS  Google Scholar 

  20. Bésuelle P. Compacting and dilating shear bands in porous rocks: theoretical and experimental conditions. J Geophys Res. 2001;106:1335–42.

    Google Scholar 

  21. Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z. Geologická minulost České republiky (Geological History of the Czech Republic). Prague: Academia; 2002 (in Czech).

    Google Scholar 

  22. Barbey P, Gasquet D, Pin C, Bourgeix AL. Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: the Budduso pluton (Sardinia). Lithos. 2008;104:147–63.

    Article  CAS  Google Scholar 

  23. Waseda Y, et al. X-ray diffraction crystallography: introduction, examples and solved problems. New York: Springer; 2011.

    Book  Google Scholar 

  24. Klein C. Minerals and rocks: exercises in crystal and mineral chemistry, crystallography, X-ray powder diffraction. New York: Wiley; 2007.

    Google Scholar 

  25. Farmer VC. The infrared spectra of minerals. London: Mineralogical Society; 1974.

    Book  Google Scholar 

  26. Krivácsy Z, Hlavay J. Determination of quartz in dust samples by diffuse reflection FTIR spectroscopy. J Mol Struct. 1993;294:251–4.

    Article  Google Scholar 

  27. Smykatz-Kloss W. Differential thermal analysis: application and results in mineralogy. Berlin: Springer; 1974.

    Book  Google Scholar 

  28. Blažek A. Book of thermal analysis. Prague: SNTL; 1974.

    Google Scholar 

  29. Hatakeyama T, Liu Z. Handbook of thermal analysis. New York: Wiley; 1998.

    Google Scholar 

  30. Plevová E, Vaculíková L, Kožušníková A, et al. Thermal study of sandstones from different Czech localities. J Therm Anal Calorim. 2011;103:835–43.

    Article  Google Scholar 

  31. Price DM. Principles of thermal analysis and calorimetry. Cambridge: The Royal Society of Chemistry; 1994.

    Google Scholar 

Download references

Acknowledgements

The article has been done in connection with project Institute of clean technologies for mining and utilization of raw materials for energy use—Sustainability programme. Identification code: LO1406—project was supported by National Programme for Sustainability I (2013–2020) financed by the means of state budget of the Czech Republic. The authors would like to thank George Laynr for correcting the use of English in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Plevova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plevova, E., Vaculikova, L., Kozusnikova, A. et al. Thermal expansion behaviour of granites. J Therm Anal Calorim 123, 1555–1561 (2016). https://doi.org/10.1007/s10973-015-4996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4996-z

Keywords

Navigation