Skip to main content
Log in

Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

An Erratum to this article was published on 22 July 2016

Abstract

Loess high banks along the right side of the Danube in Hungary are potential subjects of landslides. Small scale ambient seismic noise tomography was used at the Dunaszekcső high bank. The aim of the study was to map near surface velocity anomalies since we assume that the formation of tension cracks—which precede landslides—are represented by low velocities. Mapping Rayleigh wave group velocity distribution can help to image intact and creviced areas and identify the most vulnerable sections. The study area lies at the top of the Castle Hill of Dunaszekcső, which was named after Castellum Lugio, a fortress of Roman origin. The presently active head scarp was formed in April 2011, and our study area was chosen to be at its surroundings. Cross-correlation functions of ambient noise recordings were used to retrieve the dispersion curves, which served as the input of the group velocity tomography. Phase cross-correlation and time-frequency phase weighted stacking was applied to calculate the cross-correlation functions. The average Rayleigh wave group velocity at the loess high bank was found to be 171 ms\(^{-1}\). The group velocity map at a 0.1 s period revealed a low-velocity region, whose location coincides with a highly creviced area, where slope failure takes place along a several meter wide territory. Another low velocity region was found, which might indicate a previously unknown loosened domain. The highest velocities were observed at the supposed remnants of Castellum Lugio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ammon CJ (2001) Notes on Seismic Surface-Wave Processing Part I: Group Velocity Estimation. Saint Louis University

  • Bányai L, Mentes Gy, Újvári G, Kovács M, Czap Z, Gribovszki K, Papp G (2014) Recurrent landsliding of a high bank at Dunaszekcső, Hungary: geodetic deformation monitoring and finite element modeling. Geomorphology 210:1–13. doi:10.1016/j.geomorph.2013.11.032

  • Barmin M, Ritzwoller M, Levshin A (2001) A fast and reliable method for surface wave tomography. In: Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves, Springer, pp 1351–1375. doi:10.1007/978-3-0348-8264-4_3

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor&Francis

  • Bensen G, Ritzwoller M, Yang Y (2009) A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise. Geophysical Journal International 177(3):1177–1196. doi:10.1111/j.1365-246X.2009.04125.x

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International 169(3):1239–1260. doi:10.1111/j.1365-246X.2007.03374.x

  • Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) Obspy: A python toolbox for seismology. Seismological Research Letters 81(3):530–533. doi:10.1785/gssrl.81.3.530

  • Bijwaard H, Spakman W, Engdahl ER (1998) Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth 103(B12):30,055–30,078. doi:10.1029/98JB02467

  • Bugya T, Fábián SÁ, Görcs NL, Kovács IP, Radvánszky B (2011) Surface changes on a landslide affected high bluff in Dunaszekcső (Hungary). Central European Journal of Geosciences 3(2):119–128. doi:10.2478/s13533-011-0014-6

  • Campillo M, Paul A (2003) Long-Range Correlations in the Diffuse Seismic Coda. Science 299(5606):547–549. doi:10.1126/science.1078551

  • Cho K, Herrmann R, Ammon C, Lee K (2007) Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bulletin of the Seismological Society of America 97(1B):198–207. doi:10.1785/0120060096

  • Danneels G, Bourdeau C, Torgoev I, Havenith HB (2008) Geophysical investigation and dynamic modelling of unstable slopes: case-study of Kainama (Kyrgyzstan). Geophysical Journal International 175(1):17–34. doi:10.1111/j.1365-246X.2008.03873.x

  • De Nisco G, Nunziata C (2011) \(V_S\) Profiles from Noise Cross Correlation at Local and Small Scale. Pure and Applied Geophysics 168(3-4):509–520. doi:10.1007/s00024-010-0119-8

  • Dias RC, Julià J, Schimmel M (2015) Rayleigh-wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise. Pure and Applied Geophysics 172(6):1429–1449. doi:10.1007/s00024-014-0982-9

  • Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America 59:427–444

  • Efron B (1979) Computers and the theory of statistics: thinking the unthinkable. Siam Review 21(4):460–480. doi:10.1137/1021092

  • Gergova D, Iliev I, Rizzo V (1995) Evidence of a seismic event on Thracian tombs dated to the Hellenistic period (Sveshtari, Northeastern Bulgaria). Annals of Geophysics 38(5-6). doi:10.4401/ag-4089

  • Gomberg J, Waldron B, Schweig E, Hwang H, Webbers A, VanArsdale R, Tucker K, Williams R, Street R, Mayne P, et al. (2003) Lithology and Shear-Wave Velocity in Memphis, Tennessee. Bulletin of the Seismological Society of America 93(3):986–997. doi:10.1785/0120020164

  • Gorbatikov A, Kalinina A, Volkov V, Arnoso J, Vieira R, Velez E (2004) Results of analysis of the data of microseismic survey at Lanzarote Island, Canary, Spain. In: Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards, Springer, pp 1561–1578. doi:10.1007/978-3-0348-7897-5_17

  • Gouedard P, Stehly L, Brenguier F, Campillo M, Colin de Verdiere Y, Larose E, Margerin L, Roux P, Sánchez-Sesma FJ, Shapiro N, et al. (2008) Cross-correlation of random fields: Mathematical approach and applications. Geophysical prospecting 56(3):375–393. doi:10.1111/j.1365-2478.2007.00684.x

  • Havenith HB, Fäh D, Polom U, Roullé A (2007) S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben. Geophysical Journal International 170(1):346–358. doi:10.1111/j.1365-246X.2007.03422.x

  • Hegedűs E (2008) A megcsúszott dunaszekcsői löszfal aktív és passzív szeizmikus vizsgálata (Active and passive seismic investigation of the slipped loess bluff at Dunaszekcső). Tech. rep., Eötvös Loránd Geofizikai Intézet

  • Herrmann R (1973) Some aspects of band-pass filtering of surface waves. Bulletin of the Seismological Society of America 63(2):663

  • Herrmann RB, Ammon CJ (2002) Computer Programs in Seismology: Surface Waves, Receiver Functions and Crustal Structure. Saint Louis University, Missouri

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: theory and practice. Springer-Verlag, New York. doi:10.1007/978-3-7091-6199-9

  • Kovács IP, Fábián SÁ, Radvánszky B, Varga G (2015) Dunaszekcső Castle Hill: Landslides Along the Danubian Loess Bluff. In: Landscapes and Landforms of Hungary, Springer, pp 113–120, doi:10.1007/978-3-319-08997-3_14

  • Kraft J (2011) Dunai magaspart dunaszekcsői részletének rogyásos suvadásai (Slumping of Danube’s high bank at Dunaszekcső). Mérnökgeológia-Kőzetmechanika pp 93–104

  • Lay T, Wallace TC (1995) Modern Global Seismology. Academic press

  • Lévêque JJ, Rivera L, Wittlinger G (1993) On the use of the checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International 115(1):313–318. doi:10.1111/j.1365-246X.1993.tb05605.x

  • Levshin A, Yanovskaya T, Lander A, Bukchin B, Barmin M, Ratnikova L, Its E (1989) Seismic Surface Waves in a Laterally Inhomogeneous Earth, Modern Approaches in Geophysics, vol 9. Kluwer Academic Puhlishers, Dordrecht. doi:10.1007/978-94-009-0883-3

  • Lin FC, Ritzwoller MH, Townend J, Bannister S, Savage MK (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International 170(2):649–666. doi:10.1111/j.1365-246X.2007.03414.x

  • Lóczy D, Balogh J, Ringer Á (1989) Landslide hazard induced by river undercutting along the Danube. Geomorphological Hazards, Supplements of Geografia Fisica e Dinamica Quaternaria 2:5–11

  • Luo Y, Yang Y, Xu Y, Xu H, Zhao K, Wang K (2015) On the limitations of interstation distances in ambient noise tomography. Geophysical Journal International 201(2):652–661. doi:10.1093/gji/ggv043

  • Lóczy D (ed) (2015) Landscapes and Landforms of Hungary. World Geomorphological Landscapes, Springer International Publishing

  • Menke W (1989) Geophysical data analysis: Discrete inverse theory. International Geophysics Series, New York: Academic Press, 1989, Rev ed 1

  • Mentes Gy, Bányai L, Újvári G, Papp G, Gribovszki K, Bódis VB (2012) Recurring mass movements on the Danube’s bank at Dunaszekcső (Hungary) observed by geodetic methods. Journal of Applied Geodesy 6(3-4):203–208, doi:10.1515/jag-2012-0011

  • Moyzes A, Scheuer Gy (1978) A dunaszekcsői magaspart mérnökgeológiai vizsgálata (Engineering geological investigation of the high bank at Dunaszekcső). Földtani Közlöny 108:213–226

  • Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s technique and its applications. In: Proceedings of the 12th world conference on earthquake engineering, p 2656

  • Picozzi M, Parolai S, Bindi D, Strollo A (2009) Characterization of shallow geology by high-frequency seismic noise tomography. Geophysical Journal International 176(1):164–174, 10.1111/j.1365-246X.2008.03966.x

  • Pilz M, Parolai S, Picozzi M, Bindi D (2012) Three-dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophysical Journal International 189(1):501–512. doi:10.1111/j.1365-246X.2011.05340.x

  • Pilz M, Parolai S, Bindi D, Saponaro A, Abdybachaev U (2014) Combining seismic noise techniques for landslide characterization. Pure and Applied Geophysics 171(8):1729–1745. doi:10.1007/s00024-013-0733-3

  • Rawlinson N, Fichtner A, Sambridge M, Young MK (2014) Chapter One - Seismic Tomography and the Assessment of Uncertainty. Advances in Geophysics, vol 55, Elsevier, pp 1 – 76. doi:10.1016/bs.agph.2014.08.001

  • Ren Y, Grecu B, Stuart G, Houseman G, Hegedűs E, SCP Working Group (2013) Crustal structure of the Carpathian–Pannonian region from ambient noise tomography. Geophysical Journal International 195(2):1351–1369, doi:10.1093/gji/ggt316

  • Renalier F, Jongmans D, Campillo M, Bard PY (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. Journal of Geophysical Research: Earth Surface (2003–2012) 115(F3). doi:10.1029/2009JF001538

  • Sabra KG, Gerstoft P, Fehler MC, Gerstoft P, Roux P, Kuperman WA, Kuperman WA, Fehler MC (2005a) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophysical Research Letters 32:L03,310, doi:10.1029/2004GL021862

  • Sabra KG, Roux P, Kuperman W (2005b) Emergence rate of the time-domain green’s function from the ambient noise cross-correlation function. The Journal of the Acoustical Society of America 118(6):3524–3531. doi:10.1121/1.2109059

  • Schimmel M (1999) Phase cross-correlations: Design, comparisons, and applications. Bulletin of the Seismological Society of America 89(5):1366–1378

  • Schimmel M, Gallart J (2007) Frequency-dependent phase coherence for noise suppression in seismic array data. Journal of Geophysical Research: Solid Earth 112(B4). doi:10.1029/2006JB004680

  • Schimmel M, Stutzmann E, Gallart J (2011) Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophysical Journal International 184(1):494–506, doi:10.1111/j.1365-246X.2010.04861.x

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters 31:5, doi:10.1029/2004GL019491

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science 307(5715):1615–1618. doi:10.1126/science.1108339

  • Stankiewicz J, Weber MH, Mohsen A, Hofstetter R (2012) Dead Sea Basin imaged by ambient seismic noise tomography. Pure and Applied Geophysics 169(4):615–623. doi:10.1007/s00024-011-0350-y

  • Szalai S, Szokoli K, Metwaly M (2014a) Delineation of landslide endangered areas and mapping their fracture systems by the pressure probe method. Landslides 11(5):923–932. doi:10.1007/s10346-014-0509-6

  • Szalai S, Szokoli K, Novák A, Tóth Á, Metwaly M, Prácser E (2014b) Fracture network characterisation of a landslide by electrical resistivity tomography. Natural Hazards and Earth System Sciences Discussions 2(6):3965–4010. doi:10.5194/nhessd-2-3965-2014

  • Szanyi Gy, Gráczer Z, Gy őri E (2013) Ambient seismic noise Rayleigh wave tomography for the Pannonian basin. Acta Geodaetica et Geophysica 48(2):209–220, doi:10.1007/s40328-013-0019-3

  • Tichelaar BW, Ruff LJ (1989) How good are our best models? Jackknifing, bootstrapping, and earthquake depth. Eos, Transactions American Geophysical Union 70(20):593–606, doi:10.1029/89EO00156

  • Tsai VC (2009) On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophysical Journal International 178(3):1555–1564. doi:10.1111/j.1365-246X.2009.04239.x

  • Újvári G, Mentes Gy, Bányai L, Kraft J, Gy imóthy A, Kovács J (2009) Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 109(3-4):197–209, doi:10.1016/j.geomorph.2009.03.002

  • Visy Z (2003) The Ripa Pannonica in Hungary. Akadémiai Kiadó

  • Wang L, Wu Z, Chen T (2012) Study on the Site Effects on Ground Motion during the Wenchun Ms8.0 Earthquake, China. Lisbon, Portugal, Proceeding of the fifteenth World Conference on Earthquake Engineering, pp 1–10

  • Wessel P, Smith WH, Scharroo R, Luis J, Wobbe F (2013) Generic Mapping Tools: Improved Version Released. EOS Transactions American Geophysical Union 94(45):409–410, doi:10.1002/2013EO450001

  • Yang Y, Ritzwoller MH (2008) Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems 9(2). doi:10.1029/2007GC001814

  • Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International 168(1):259–274, doi:10.1111/j.1365-246X.2006.03203.x

  • Yanovskaya TB, Kizima ES, Antonova LM (1998) Structure of the crust in the Black Sea and adjoining regions from surface wave data. Journal of Seismology 2(4):303–316, doi:10.1023/A:1009716017960

Download references

Acknowledgments

We are grateful to Prof. Zsolt Visy for his help in the archaeological characterisation of the investigated area and to Katalin Gribovszki for the site’s digital elevation model. We express our thanks to the colleagues who helped organising the measurements and participated in them. We thank Dr. Yannik Behr and an anonymous reviewer for their constructive comments on the manuscript, the quality of the revised paper has been improved significantly thanks to their remarks and suggestions. Processing of the measured data was carried out using the Python software package ObsPy (Beyreuther et al. 2010). Maps and plots were prepared using Generic Mapping Tools (Wessel et al. 2013). This study was supported by the Hungarian Scientific Research Fund under Grant OTKA K105399 and K81295. The travel of Zdeněk Kaláb and Markéta Lednická was supported by the bilateral project between the Institute of Geonics (Ostrava) and the MTA Kövesligethy Radó Seismological Observatory (Budapest) (NKM30/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyöngyvér Szanyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szanyi, G., Gráczer, Z., Győri, E. et al. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary). Pure Appl. Geophys. 173, 2913–2928 (2016). https://doi.org/10.1007/s00024-016-1304-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1304-1

Keywords

Navigation