Skip to main content
Log in

Multivariate truncated moments problems and maximum entropy

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We characterize the existence of the Lebesgue integrable solutions of the truncated problem of moments in several variables on unbounded supports by the existence of some maximum entropy—type representing densities and discuss a few topics on their approximation in a particular case, of two variables and 4th order moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, R.V.: The multidimensional maximum entropy moment problem: a review on numerical methods. Commun. Math. Sci 8(2), 377–392 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Ambrozie, C.-G.: Maximum entropy and moment problems. Real Anal. Exch. 29(2), 607–627 (2003/04)

    Google Scholar 

  3. Ambrozie, C.-G.: Truncated moment problems for representing densities and the Riesz–Haviland theorem. J. Operator Theory. arXiv:1111.6555 (to appear)

  4. Ambrozie, C.-G.: Finding positive matrices subject to linear restrictions. Linear Algebra Appl. 426:2–3, 716–728 (2007)

    Google Scholar 

  5. Akhiezer, N.I.: The classical moment problem. Hafner Publ. Co., New York (1965)

    MATH  Google Scholar 

  6. Au, J.D.: Lösung Nichtlinearer problems in der Erweiterten Thermodynamik. PhD thesis, Technische Universität Berlin (2001)

  7. Bakonyi, M., Woerdeman, H.J.: Maximum entropy elements in the intersection of an affine space and the cone of positive definite matrices. SIAM J. Matrix Anal. Appl. 16(2), 369–376 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Doan, X.V., Lasserre, J.B.: Approximating integrals of multivariate exponentials: a moment approach. Oper. Res. Lett. 36(2), 205–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M.: Maximum entropy and feasibility methods for convex and nonconvex inverse problems, optimization. J. Math. Program. Oper. Res. 61:1(2012).

    Google Scholar 

  10. Borwein, J.M., Lewis, A.S.: Duality relationships for entropy-like minimization problems. SIAM J. Cont. Optim. 29(2), 325–338 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borwein, J.M., Lewis, A.S: Partially finite convex programming. I. Quasi relative interiors and duality theory. Math. Program. 57:1, Ser. B, 15–48 (1992)

  12. Blekherman, G., Lasserre, J.B.: The truncated \(K\)-moment problem for closure of open sets. J. Funct. Anal. 263(11), 3604–3616 (2012)

    Google Scholar 

  13. Van Campenhout, J.M., Cover, T.M.: Maximum entropy and conditional probability. IEEE Trans. Inf. Theory. IT-27, 483–489 (1981)

    Google Scholar 

  14. Cercignani, C. (ed.): Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048. Springer-Verlag, Berlin (1984)

  15. Curto, R.E., Fialkow, L.A.: An analogue of the Riesz–Haviland theorem for the truncated moment problem. J. Funct. Anal. 255(10), 2709–2731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem for flat data. Mem. Amer. Math. Soc. 119(568), x+32 (1996)

  17. Fuglede, B.: The multidimensional moment problem. Exp. Math. 1, 47–65 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Groth, C.P., McDonald, J.G.: Towards physically realizable and hyperbolic moment closures for kinetic theory. Continuum Mech. Thermodyn. 21, 467–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haviland, E.K.: On the momentum problem for distributions in more than one dimension, I. Am. J. Math. 57, 562–568 (1935)

    Article  MathSciNet  Google Scholar 

  20. Jaynes, E.T.: On the rationale of maximum entropy methods. Proc. IEEE. 70, 939–952 (1982)

    Article  Google Scholar 

  21. Junk, M.: Minimum relative entropy systems of the Boltzmann equation (Unpublished work)

  22. Junk, M.: Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93, 1143–1167 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Junk, M.: Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10:7(2000), 1001–1025

    Google Scholar 

  24. Junk, M.: Maximum entropy moment problems and extended Euler equations. Transp. Transition Regimes (MN, 2000), 169–198, IMA Vol. Math. Appl., 135, Springer, New York (2004)

  25. Prestel, A., Delzell, C.N.: Positive polynomials. From Hilbert’s 17th problem to real algebra. Springer Monographs in Mathematics. Springer, Berlin (2001)

  26. Putinar, M., Budišić, M.: Conditioning moments of singular measures for entropy optimization I. Indagationes Mathematicae 23(4), 848–883 (2012)

    Google Scholar 

  27. Hauck, C.D., Levermore, C.D., Tits, A.L.: Convex duality and entropy-based moment closures; characterizing degenerate densities. SIAM J. Control Optim. 47:4, 1977–2015 (2008)

    Google Scholar 

  28. Lasserre, J.B.: Semidefinite programming for gradient and Hessian computation in maximum entropy estimation. Proceedings of the IEEE CDC conference, December (2007)

  29. Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. 112:1, Ser. B, 65–92 (2008)

  30. Léonard, C.: Minimization of entropy functionals. J. Math. Anal. Appl. 346:1, 183–204 (2008)

    Google Scholar 

  31. Lewis, A.S.: Consistency of moment systems. Can. J. Math. 47, 995–1006 (1995)

    Article  MATH  Google Scholar 

  32. Mead, L.R., Papanicolaou, N.: Maximum entropy and the problem of moments. J. Math. Phys. 25(8), 2404–2417 (1984)

    Google Scholar 

  33. Moreau, J.J.: Sur la polaire d’une fonction semi-continue supérieurement, Comptes Rendus de l’Academie des Sciences, vol. 258 (1964)

  34. Putinar, M., Scheiderer, C.: Multivariate moment problems: geometry and indeterminateness. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 137–157 (2006)

    Google Scholar 

  35. Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. Math. (2) 149(3), 1087–1107 (1999)

    Google Scholar 

  36. Rockafellar, R.T.: Extension of Fenchel’s duality for convex functions. Duke Math. J. 33, 81–89 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shohat, J., Tamarkin, J.: The problem of moments. Math. Surv. I, Am. Math. Soc., Providence, RI (1943)

  38. Cichoń, D., Stochel, J., Szafraniec, F.H.: Riesz–Haviland criterion for incomplete data. J. Math. Anal. Appl. 380:1, 94–104 (2011)

    Google Scholar 

  39. Tagliani, A.: Maximum entropy in the Hamburger moments problem. J. Math. Phys 35(9), 5087–5096 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vasilescu, F.-H.: Moment problems for multi-sequences of operators. J. Math. Anal. Appl. 219(2), 246–259 (1998)

    Google Scholar 

Download references

Acknowledgments

The present work was supported by the Czech grant IAA 100190903 GA AV (RVO: 67985840) and the Romanian grant CNCS UEFISCDI, no. PN-II-ID-PCE-2011-3-0119. I wish to express my thanks to professor Marian Fabian for drawing the results of the Fenchel duality theory to my attention. Also, I thank professor Mihai Putinar for several interesting suggestions and relevant references. The author is also indebted to the reviewers for their expert indications and reference to more recent works, that definitely improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calin -Grigore Ambrozie.

Additional information

Supported by the Czech grant IAA100190903 GAAV (RVO: 67985840) and the Romanian grant CNCS UEFISCDI, no. PN-II-ID-PCE-2011-3-0119.

Appendix: The functions \({r}_{{j\, i}}\)

Appendix: The functions \({r}_{{j\, i}}\)

We give an algorithm to recurrently compute \(r_{ji},c_{ji}\), in particular solve (12) to finish the proof of Proposition 8. Set \(\delta _k =\delta _{(l+1-k,k)\, j_0 }\) for \(0\le k\le l+1\). Let \(\alpha _k =a_{(l-2-k,k)}\), \(\beta _k =b_{(l-2-k,k)}\) for \(0\! \le \! k\! \le \! l\! -\! 2\). Thus \(\alpha _k ,\beta _k =0\) for \(k<0\), \(k\ge l-1\). Also \(x_\kappa =0\) if \(\kappa \not \ge 0\). Change the summation indices in (12) by \(j\! =\! i\! +\! e_{1,2}\! -\! \iota \) (\( \ge \! 0\)). Then (12) becomes \(\sum _{|j|=l-2, (j_2 \le i_2) }(i_1 -j_1 +1)x_{i-j+e_1}b_j -\sum _{|j|=l-2,( j_2 \le i_2)}(i_2 -j_2 +1)x_{i-j+e_2}a_j =\delta _{ij_0}\) where the (redundant) condition \(j_2\le i_2\) follows from \(j\le i\), that comes from \(\iota \ge e_{1,2}\). For every \(i=(l+1-k,k)\) with \(0\le k\le l+1\), we have the equivalence \((j\ge 0,|j|=l-2, j_2 \le i_2)\, \Leftrightarrow \, j=(l-2-p,p)\) for \(0\le p\le k\) and hence the \(l+1\) equations in (12) become now, respectively,

$$\begin{aligned} \sum _{p=0}^k [ (4\! +\! p\! -\! k)x_{(4+p-k,k-p)}\beta _p \! - \! (k\! -\! p\! +\! 1)x_{(3+p-k,k-p+1)}\alpha _p ] \! =\! \delta _k ,\quad 0\! \le \! k\! \le \! l\!+\!1.\nonumber \\ \end{aligned}$$
(15)

If \(l\ge 5\), let \(\alpha _0 ,\ldots ,\alpha _{l-5}=0\) and define \(\beta _0 ,\ldots ,\beta _{l-5}\) inductively by\( 4x_{40}\beta _k = -\sum _{p=0}^{k-1}(4+p-k)x_{(4+p-k,\, k-p)}\beta _p +\delta _k\) (\(0\le k\le l-5\)) where \(\sum _\emptyset :=0\). Note that \(x_{40}<0\) since \(g\in G\). This fulfills (15) for \(0\le k\le l-5\). Last six equations in (12) [(\(l-4\le k\le l+1\) in (15)] will provide \(\alpha _k ,\beta _k \) (\(l-4\le k\le l-2\)). If \(l=4\), skip this step and go directly to the linear \(6\times 6\) system [(in this case (16) for \(y,z,w=0\)]. In any case, we let now \(i=(l+1-k,k)\) for \(0\le k\le l+1\) in (12). We have \(i+e_{1}-\iota =(l+2-k -\iota _1 ,k-\iota _2)\) and \(i+e_2 -\iota =(l+1-k-\iota _1 ,k-\iota _2 +1)\). Last 6 equations in (12) become \(\sum _{|\iota |=4} \! \iota _1 x_\iota \beta _{k -\iota _2 } \! -\! \sum _{|\iota |=4} \! \iota _2 x_\iota \alpha _{k-\iota _2 +1}=\delta _k \) (\(l-4\le k\le l+1\)), see below. The brackets \(( )\) border quantities already known in terms of \(\beta _0 ,\ldots ,\beta _{l-5}\). The markers \(\lfloor \rceil \) border sums of terms that are null due to \(\iota _{1,2}=0\), \(\alpha _k ,\beta _k =0\) (\(k\ge l-1\)) or \(\alpha _k =0\) (\(0\le k\le l-5\)):

$$\begin{aligned} \begin{array}{l} 4x_{40}\beta _{l-4}+(3x_{31}\beta _{l-5}+2x_{22}\beta _{l-6}+1x_{13}\beta _{l-7}+0x_{04}\beta _{l-8})\\ \lfloor -0x_{40}\alpha _{l-3}\rceil -1x_{31}\alpha _{l-4}\, \lfloor -2x_{22}\alpha _{l-5}-3x_{13}\alpha _{l-6}-4x_{04}\alpha _{l-7}\, \rceil =\delta _{l-4} \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l}4x_{40}\beta _{l-3}+3x_{31}\beta _{l-4}+(2x_{22}\beta _{l-5}+1x_{13}\beta _{l-6}+0x_{04}\beta _{l-7})\\ \lfloor -0x_{40}\alpha _{l-2}\rceil -1x_{31}\alpha _{l-3}-2x_{22}\alpha _{l-4}\, \lfloor -3x_{13}\alpha _{l-5}-4x_{04}\alpha _{l-6}\, \rceil =\delta _{l-3} \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l}4x_{40}\beta _{l-2}+3x_{31}\beta _{l-3}+2x_{22}\beta _{l-4}+(1x_{13}\beta _{l-5}+0x_{04}\beta _{l-6})\\ \, \lfloor -0x_{40}\alpha _{l-1}\, \rceil -1x_{31}\alpha _{l-2}-2x_{22}\alpha _{l-3}-3x_{13}\alpha _{l-4}\, \lfloor -4x_{04}\alpha _{l-5}\, \rceil =\delta _{l-2} \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l}\, \lfloor 4x_{40}\beta _{l-1}+\, \rceil \, 3x_{31}\beta _{l-2}+2x_{22}\beta _{l-3}+1x_{13}\beta _{l-4}+\lfloor 0x_{04}\beta _{l-5}\rceil \\ \, \lfloor -0x_{40}\alpha _{l}-1x_{31}\alpha _{l-1}\, \rceil -2x_{22}\alpha _{l-2}-3x_{13}\alpha _{l-3}-4x_{04}\alpha _{l-4} =\delta _{l-1}\end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l}\, \lfloor 4x_{40}\beta _{l}+3x_{31}\beta _{l-1}+\, \rceil \, 2x_{22}\beta _{l-2}+1x_{13}\beta _{l-3}+\lfloor 0x_{04}\beta _{l-4}\rceil \\ \, \lfloor -0x_{40}\alpha _{l+1}-1x_{31}\alpha _{l}-2x_{22}\alpha _{l-1}\, \rceil -3x_{13}\alpha _{l-2}-4x_{04}\alpha _{l-3} =\delta _{l} \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l}\, \lfloor 4x_{40}\beta _{l+1}+3x_{31}\beta _{l}+2x_{22}\beta _{l-1}+\, \rceil \, 1x_{13}\beta _{l-2}+\lfloor 0x_{04}\beta _{l-3}\rceil \\ \, \lfloor -0x_{40}\alpha _{l+2}-1x_{31}\alpha _{l+1}-2x_{22}\alpha _{l}-3x_{13}\alpha _{l-1}\, \rceil -4x_{04}\alpha _{l-2} =\delta _{l+1}. \end{array} \end{aligned}$$

Set \(y\! =\! -3x_{31}\beta _{l-5} \! -\! 2x_{22}\beta _{l-6}\! -\! x_{13}\beta _{l-7}\), \( z\! =\! -2x_{22}\beta _{l-5}\! -\! x_{13}\beta _{l-6}\) and \(w\! =\! -x_{13}\beta _{l-5}\).

We easily read from above that \(\alpha _k ,\beta _k\) for \(k\! =\! l-4,\, l-3,\, l-2\) are given by

$$\begin{aligned} \left[ \, \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 4x_{40}&0&0&x_{31}&0&0\\ [2mm] 3x_{31}&4x_{40}&0&2x_{22}&x_{31}&0\\ [2mm] 2x_{22}&3x_{31}&4x_{40}&3x_{13}&2x_{22}&x_{31}\\&\,&\,&\,&\,&\\ x_{13}&2x_{22}&3x_{31}&4x_{04}&3x_{13}&2x_{22}\\ [2mm] 0&x_{13}&2x_{22}&0&4x_{04}&3x_{13}\\ [2mm] 0&0&x_{13}&0&0&4x_{04} \end{array}\, \right] \! \left[ \, \begin{array}{l}\beta _{l-4}\\ [2mm] \beta _{l-3}\\ [2mm] \beta _{l-2}\\ \\ -\alpha _{l-4}\\ [2mm] -\alpha _{l-3}\\ [2mm] -\alpha _{l-2} \end{array} \, \right] \! \! =\! \! \left[ \begin{array}{l}y+\delta _{l-4}\\ [2mm] z+ \delta _{l-3}\\ [2mm] w+\delta _{l-2}\\ \\ \delta _{l-1}\\ [2mm] \delta _{l}\\ [2mm] \delta _{l+1} \end{array}\right] \end{aligned}$$
(16)

(note also that \(g\in G_0\)). We have \(a_j, b_j\), and so \(u, v\) such that \(\text{ deg}\, (L(u,v)-t^{j_0})\le l\). Now \(\pi =t^{j_0}-L\) is determined by summing the terms of degree \(\le l\) in \(-L\). For \(m=1,2\) set \(K_m = \{ (j,\iota ): |j|=l-2, |\iota |\le 3, \iota _m \ge 1\}\). Then

$$\begin{aligned} \pi&= \sum _{(j,\, \iota )\in K_2 }\! a_j \iota _2 x_\iota t^{j+\iota -e_2}\! -\! \sum _{(j,\, \iota )\in K_1 }\! b_j \iota _1 x_\iota t^{j+\iota -e_1}\! +\sum _{|j|=l-2, j_2 \ge 1}\! j_2 a_j t^{j-e_2}\\&- \sum _{|j|=l-2, j_1 \ge 1}\! j_1 b_j t^{j-e_1}. \end{aligned}$$

For any \(i\ge 0\) with \(|i|\le l\), the coefficient of \(t^i\) in the sum \(\Sigma _{K_2}\) from above is \(\sum _{(j,\, \iota )\in K_2 (i) }a_j \iota _2 x_\iota \) where \(K_2 (i)= \{ (j,\iota )\in K_2 :j+\iota -e_2 =i\}\). The map \(K_2 (i)\ni (j,\iota )\mapsto i-j\) is bijective onto \(I_i :=\{ \kappa \ge 0 :\kappa \le i,|\kappa |=|i|+2-l\}\). Then we may use it to change the summation index by \(\kappa =i-j\) and get the coefficient of \(t^i\) in \(\Sigma _{K_2}\) as \(\sum _{\kappa \in I_i} (\kappa _2 +1)a_{i-\kappa }x_{\kappa +e_2}\). Similarly, the coefficient of \(t^i\) in \(\Sigma _{K_1}\) is \(\sum _{\kappa \in I_i}(\kappa _1 +1)b_{i-\kappa }x_{\kappa +e_1}\). The coefficient \(c_{j_0 i}\) (\(=\, \)a rational function \(c_{\, lj_0 i}(x)\) of \(x\), actually) of \(t^i\) in \(\pi (t)\) is then

$$\begin{aligned} c_{j_0 i} =\sum _{\kappa \in I_i}[(\kappa _2 +1)x_{\kappa +e_2}a_{i-\kappa } -(\kappa _1 +1)x_{\kappa +e_1}b_{i-\kappa } ]+d_{j_0 i}\quad (|i|\le l) \end{aligned}$$
(17)

where \(d_{j_0 i}\! =\! (i_2 +1)a_{i+e_2 }\! -\! (i_1 +1)b_{i+e_1 }\) if \( |i|\! =\! l-3\), and 0 otherwise. We have

$$\begin{aligned} g_{j_0} =\sum _{|i|\le l}c_{j_0 i}(x)\, g_i \text{(} |j_0 |=l+1,\, l\ge 4\text{)}.\end{aligned}$$
(18)

Successive compositions of the mapping \((g_i)_{|i|\le l}\mapsto ((g_{j_0})_{|j_0 |=l+1},\, (g_i)_{|i|\le l})=\) \((g_i)_{|i|\le l+1}\) given by (18) for \(l=4,5,\ldots \) provide us with \(r_{ji}(x)\) such that

$$\begin{aligned} g_{j}=\sum _{|i|\le 4}r_{ji}(x)g_i \text{(} |j|\ge 5\text{)}. \end{aligned}$$
(19)

Thus (16)–(19) provide \(c_{ji},r_{ji}\). Since \(\det A x \! \not =\! 0\) and \(x_{40}\! =\! \sum _{|i|=4}x_{i}t^i |_{t=e_1 }\! <\! 0\), the denominators of the rational functions \(r_{ji}\) do not vanish at \(x=\lambda ^*\). \(\square \)

It would be interesting to generalize Proposition 8 to arbitrary \(n\) and \(k\), for a class of simple domains \(T\) including \(\mathbb R ^n\), \([0,\infty )^n\) and get rid of assumptions like \(g\in G_0 , G\), for Lagrangians \(L_\epsilon \) with \(\epsilon >0\). Also, numerical tests of systems like (13) could be tried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrozie, C.G. Multivariate truncated moments problems and maximum entropy. Anal.Math.Phys. 3, 145–161 (2013). https://doi.org/10.1007/s13324-012-0052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0052-3

Keywords

Mathematics Subject Classification (2010)

Navigation