Skip to main content
Log in

The motion of a compressible viscous fluid around rotating body

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We consider the motion of compressible viscous fluids around a rotating rigid obstacle when the velocity at infinity is non zero and parallel to the axis of rotation. We prove the existence of weak solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We shall give more details on this procedure when treating the limit \(R\rightarrow \infty \) in the next section.

References

  1. Bresch, D., Desjardins, B., Gérard-Varet, D.: Rotating fluids in a cylinder. DCDS A 11, 47–82 (2004)

    Article  MATH  Google Scholar 

  2. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier. E.: Mathematical Geophysics, vol. 32 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, Oxford (2006)

  3. Deuring, P., Kračmar, S., Nečasová, Š.: On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. SIAM J. Math. Anal. 43, 705–738 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farwig, R.: An \(L^{q}\)-analysis of viscous fluid flow past a rotating obstacle. Tôhoku Math. J. 920(58), no. 1, 129–147 (2006)

  5. Farwig, R., Hishida, T., Müller, D.: \(L^q\)-theory of a singular “winding” integral operator arising from fluid dynamics. Pacific J. Math. 215, 297–312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farwig, R., Krbec, M., Nečasová, Š.: A weighted \(L^q\) approach to Oseen flow around a rotating body. Math. Methods Appl. Sci. 31(5), 551–574 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  8. Feireisl, E.: Low Mach number limits of compressible rotating fluids. J. Math. Fluid Mech. 14(1), 618 (2012)

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E., Gallagher, I., Novotný, A.: A singular limit for compressible rotating fluids. SIAM J. Math. Anal. 44(1), 192–205 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feireisl, E., Gallagher, I., Gerard-Varet, D., Novotný, A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314, 641–670 (2012)

    Article  MATH  Google Scholar 

  11. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  12. Feireisl, E., Kreml, O., Nečasová, Š., Neustupa, J., Stebel. J.: Incompressible limits of fluids excited by moving boundaries. SIAM J. Math. Anal. 46, 1456–1471 (2014)

    Google Scholar 

  13. Feireisl, E., Kreml, O., Nečasová, Š., Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier–Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254(2013), 125–140 (2013)

    Article  MATH  Google Scholar 

  14. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Friedlander, S., Serre, D. (eds) Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 653–791. Elsevier, New York (2002)

  15. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. Springer, New York, Berlin, Heidelberg (2012)

    Google Scholar 

  16. Galdi, G.P., Silvestre, A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake. RIMS Kôkyûroku Bessatsu B1, 108–127 (2007)

    Google Scholar 

  17. Galdi, G.P., Kyed, M.: Steady-state Navier–Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Rational Mech. Anal. 200, 21–58 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Geissert, M., Heck, H., Hieber, M.: \(L^{p}\) theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Hishida, T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150, 307–348 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jesslé, D., Jin, B.J., Novotný, A.: Navier–Stokes–Fourier system, weak solutions, relative entropy, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1907–1951 (2013)

    Google Scholar 

  21. Kračmar, S., Nečasová, Š., Penel, P.: Anisotropic \(L^{2}\)-estimates of weak solutions to the stationary Oseen-type equations in 3D-exterior domain for a rotating body. J. Math. Soc. Jpn. 62(1), 239–268 (2010)

    Article  MATH  Google Scholar 

  22. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lions, P.-L.: Mathematical Topics in Fluid Dynamics. Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  24. Novo, S.: Compressible Navier–Stokes model with inflow-outflow boundary conditions. J. Math. Fluid Mech. 7, 485–514 (2005)

    Google Scholar 

  25. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  26. Sýkora, P.: Motion of a compressible fluid in a time dependent domain. Master thesis, Charles University of Prague (2012) (in Czech)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Novotný.

Additional information

S. Kracmar acknowledges the support of the Czech Science Foundation (GAČR) project P201/11/1304. S. Nečasová acknowledges the support of the Czech Science Foundation (GAČR) project P201/11/1304 in the general framework of RVO 67985840. The work was supported by the MODTERCOM project within the APEX programme of the region Provence-Alpes-Côte d’Azur, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kračmar, S., Nečasová, Š. & Novotný, A. The motion of a compressible viscous fluid around rotating body. Ann Univ Ferrara 60, 189–208 (2014). https://doi.org/10.1007/s11565-014-0212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-014-0212-5

Keywords

Mathematics Subject Classification

Navigation