We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Coordination control of discrete-event systems revisited

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper, we revise and further investigate the coordination control approach proposed for supervisory control of distributed discrete-event systems with synchronous communication based on the Ramadge-Wonham automata framework. The notions of conditional decomposability, conditional controllability, and conditional closedness ensuring the existence of a solution are carefully revised and simplified. The approach is generalized to non-prefix-closed languages, that is, supremal conditionally controllable sublanguages of not necessary prefix-closed languages are discussed. Non-prefix-closed languages introduce the blocking issue into coordination control, hence a procedure to compute a coordinator for nonblockingness is included. The optimization problem concerning the size of a coordinator is under investigation. We prove that to find the minimal extension of the coordinator event set for which a given specification language is conditionally decomposable is NP-hard. In other words, unless P=NP, it is not possible to find a polynomial algorithm to compute the minimal coordinator with respect to the number of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barrett G, Lafortune S (2000) Decentralized supervisory control with communicating controllers. IEEE Trans Autom Control 45(9):1620–1638

    Article  MATH  MathSciNet  Google Scholar 

  • Boutin ODM, van Schuppen JH (2011) On the control of the paint factory scale model. CWI Technical Report MAC-1103. Available at http://oai.cwi.nl/oai/asset/18598/18598D.pdf

  • Bravo HJ, Da Cunha AEC, Pena P, Malik R, Cury JER (2012) Generalised verification of the observer property in discrete event systems. In: Proceedings of WODES 2012. Guadalajara, Mexico, pp 337–342

    Google Scholar 

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn, Springer

  • Feng L (2007) Computationally efficient supervisor design for discrete-event systems. Ph.D. thesis, University of Toronto

  • Feng L, Wonham W (2010) On the computation of natural observers in discrete-event systems. Discret Event Dyn Syst 20:63–102

    Article  MATH  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of np-completeness. In: Freeman, W H

  • Gaudin B, Marchand H (2004) Supervisory control of product and hierarchical discrete event systems. Eur J Control 10(2):131–145

    Article  MATH  MathSciNet  Google Scholar 

  • Komenda J, Masopust T, van Schuppen JH (2011a) Coordinated control of discrete event systems with non-prefix-closed languages. In: Proceedings of IFAC world congress 2011, Milan, Italy, pp 6982–6987

  • Komenda J, Masopust T, van Schuppen JH (2011b) Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator. Syst Control Lett 60(7):492–502

    Article  MATH  Google Scholar 

  • Komenda J, Masopust T, van Schuppen JH (2012a) On algorithms and extensions of coordination control of discrete-event systems. In: Proceedings of WODES 2012, Guadalajara, Mexico, pp 245–250

  • Komenda J, Masopust T, van Schuppen JH (2012b) On conditional decomposability. Syst Control Lett 61(12):1260–1268

    Article  MATH  MathSciNet  Google Scholar 

  • Komenda J, Masopust T, van Schuppen JH (2012c) Supervisory control synthesis of discrete-event systems using a coordination scheme. Automatica 48(2):247–254

    Article  MATH  MathSciNet  Google Scholar 

  • Komenda J, Masopust T, van Schuppen JH (2013) Multilevel coordination control of modular DES. In: Proceedings of 52nd IEEE conference on decision and control (CDC)

  • Komenda J, van Schuppen JH (2008) Coordination control of discrete event systems. In: Proceedings of WODES 2008, Gothenburg, Sweden, pp 9–15

  • Komenda J, van Schuppen JH, Gaudin B, Marchand H (2008) Supervisory control of modular systems with global specification languages. Automatica 44(4):1127–1134

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar R, Takai S (2007) Inference-based ambiguity management in decentralized decision-making: decentralized control of discrete event systems. IEEE Trans Autom Control 52(10):1783–1794

    Article  MathSciNet  Google Scholar 

  • Leduc RJ, Lawford M, Wonham WM (2005) Hierarchical interface-based supervisory control-part ii: parallel case. IEEE Trans Autom Control 50(9):1336–1348

    Article  MathSciNet  Google Scholar 

  • Moor T et al (2012) libFAUDES – a discrete event systems library. Available at http://www.rt.eei.uni-erlangen.de/FGdes/faudes/

  • Pena P, Cury J, Lafortune S (2008) Polynomial-time verication of the observer property in abstractions. In: Proceedings of ACC 2008, Seattle, pp 465–470

  • Pena PN, Cury JER, Lafortune S (2009) Verification of nonconflict of supervisors using abstractions. IEEE Trans Autom Control 54(12):2803–2815

    Article  MathSciNet  Google Scholar 

  • Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control Optim 25(1):206–230

    Article  MATH  MathSciNet  Google Scholar 

  • Ricker SL, Rudie K (2000) Know means no: incorporating knowledge into discrete-event control systems. IEEE Trans Autom Control 45(9):1656–1668

    Article  MATH  MathSciNet  Google Scholar 

  • Rudie K, Wonham WM (1992) Think globally, act locally: decentralized supervisory control. IEEE Trans Autom Control 37(11):1692–1708

    Article  MATH  MathSciNet  Google Scholar 

  • Schmidt K, Breindl C (2008) On maximal permissiveness of hierarchical and modular supervisory control approaches for discrete event systems. In: Proceedings of WODES 2008, Gothenburg, pp 462–467

  • Schmidt K, Breindl C (2011) Maximally permissive hierarchical control of decentralized discrete event systems. IEEE Trans Autom Control 56(4):723–737

    Article  MathSciNet  Google Scholar 

  • Schmidt K, Moor T, Perk S (2008) Nonblocking hierarchical control of decentralized discrete event systems. IEEE Trans Autom Control 53(10):2252–2265

    Article  MathSciNet  Google Scholar 

  • Su R, van Schuppen JH, Rooda JE (2010) Model abstraction of nondeterministic finite-state automata in supervisor synthesis. IEEE Trans Autom Control 55(11):2527–2541

    Article  Google Scholar 

  • Su R, van Schuppen JH, Rooda JE (2012) Maximally permissive coordinated distributed supervisory control of nondeterministic discrete-event systems. Automatica 48(7):1237–1247

    Article  MATH  MathSciNet  Google Scholar 

  • Wong K (1998) On the complexity of projections of discrete-event systems. In: Proceedings of WODES 1998, Cagliari, pp 201–206

  • Wong K, Wonham W (1996) Hierarchical control of discrete-event systems. Discret Event Dyn Syst 6(3):241–273

    Article  MATH  MathSciNet  Google Scholar 

  • Wonham WM (2012) Supervisory control of discrete-event systems. Lecture notes, University of Toronto. Available at http://www.control.utoronto.ca/DES/

  • Yoo T, Lafortune S (2002) A general architecture for decentralized supervisory control of discrete-event systems. Discret Event Dyn Syst 12(3):335–377

    Article  MATH  MathSciNet  Google Scholar 

  • Yoo T, Lafortune S (2004) Decentralized supervisory control with conditional decisions: supervisor existence. IEEE Trans Autom Control 49(11):1886–1904

    Article  MathSciNet  Google Scholar 

  • Zhong H, Wonham WM (1990) On the consistency of hierarchical supervision in discrete-event systems. IEEE Trans Autom Control 35(10):1125–1134

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of two first authors was supported by RVO: 67985840. In addition, the first author was supported by the Grant Agency of the Czech Republic under grant P103/11/0517 and the second author by the Grant Agency of the Czech Republic under grant P202/11/P028. The authors gratefully acknowledge very useful suggestions and comments of the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Masopust.

Additional information

A preliminary version was presented at the 11th International Workshop on Discrete Event Systems (WODES 2012) held in Guadalajara, Mexico (Komenda et al. 2012a).

Appendix Auxiliary results

Appendix Auxiliary results

In this section, we list auxiliary results required in the paper.

Lemma 7 (Proposition 4.6, (Feng 2007))

Let L i over Σ i , for i = 1, 2, be prefix-closed languages, and let K i be a controllable sublanguage of L i with respect to L i and Σ i, u . Let Σ = Σ1 ∪ Σ2. If K 1 and K 2 are synchronously nonconflicting, then K 1K 2 is controllable with respect to L 1L 2 and Σ u .

Lemma 8 (Komenda et al. 2012c)

Let K be a subset of a language L, and L be a subset of a language M over Σ such that K is controllable with respect to \(\overline {L}\) and Σ u , and L is controllable with respect to \(\overline {M}\) and Σ u . Then K is controllable with respect to \(\overline {M}\) and Σ u .

Lemma 9 (Wonhan 2012)

Let \(P_{k} : \Sigma ^{*}\to \Sigma _{k}^{*}\) be a projection, and let L i be a language over Σ i , where Σ i is a subset of Σ, for i = 1, 2, and Σ1 ∩ Σ2is a subset of Σ k . Then P k (L 1L 2) = P k (L 1) ∥ P k (L 2).

Lemma 10 (Komenda et al. 2012c)

Let L i be a language over Σ i , for i = 1, 2, and let \(P_{i} : (\Sigma _{1}\cup \Sigma _2)^{*} \to \Sigma _{i}^{*}\) be a projection. Let A be a language over Σ1 ∪ Σ2 such that P 1(A) is a subset of L 1 and P 2(A) is a subset of L 2. Then A is a subset of L 1L 2.

Lemma 11 (Pena et al. 2009)

Let L i be a language over Σ i , for iJ, and let \(\cup _{k,\ell \in J}^{k\neq \ell } (\Sigma _{k}\cap \Sigma _{\ell })\subseteq \Sigma _{0}\). If \(P_{i,0}:\Sigma _{i}^{*} \to (\Sigma _{i}\cap \Sigma _0)^{*}\) is an L i -observer, for iJ, then \(\overline {\|_{i\in J} L_{i}} = \|_{i\in J} \overline {L_{i}}\) if and only if \(\overline {\|_{i\in J} P_{i,0}(L_i)} = \|_{i\in J} \overline {P_{i,0}(L_i)}\).

Lemma 12 (Komenda et al. 2011b)

A language K ⊆ (Σ1 ∪ Σ2 ∪ … ∪ Σ n )is conditionally decomposable with respect to event sets Σ1, Σ2,…, Σ n , Σ k if and only if there exist languages \(M_{i+k}\subseteq \Sigma _{i+k}^{*}\), i = 1, 2, … , n, such that \(K=\parallel _{i=1}^{n} M_{i+k}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komenda, J., Masopust, T. & van Schuppen, J.H. Coordination control of discrete-event systems revisited. Discrete Event Dyn Syst 25, 65–94 (2015). https://doi.org/10.1007/s10626-013-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-013-0179-x

Keywords

Navigation