Skip to main content
Log in

The complexity of proving that a graph is Ramsey

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c log n. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every c-Ramsey graph must contain a large subgraph with some properties typical for random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Alekhnovich, E. Ben-Sasson, A. A. Razborov and A. Wigderson: Pseudorandom generators in propositional proof complexity, SIAM Journal on Computing, 34 (2004), 67–88, a preliminary version appeared in FOCS ’00.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Atserias and V. Dalmau: A combinatorial characterization of resolution width, J. Comput. Syst. Sci., 74 (2008), 323–334.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Atserias, J. K. Fichte and M. Thurley: Clause-learning algorithms with many restarts and bounded-width resolution, J. Artif. Intell. Res. (JAIR), 40 (2011), 353–373.

    MathSciNet  MATH  Google Scholar 

  4. E. Ben-Sasson and A. Wigderson: Short proofs are narrow - resolution made simple, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, 517–526, 1999.

    Google Scholar 

  5. O. Beyersdorff, N. Galesi and M. Lauria: Parameterized complexity of DPLL search procedures, ACM Transactions on Computational Logic, 14 (2013), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Beyersdorff, N. Galesi, M. Lauria and A. A. Razborov: Parameterized bounded-depth Frege is not optimal, ACM Trans. Comput. Theory, 4 (2012), 1–16.

    Article  MATH  Google Scholar 

  7. L. Carlucci, N. Galesi and M. Lauria: Paris-Harrington tautologies, in: Proc. of IEEE 26th Conference on Computational Complexity, 93–103, 2011.

    Google Scholar 

  8. F. R. K. Chung, P. Erdős and R. L. Graham: Erdős on Graphs: His Legacy of Unsolved Problems, AK Peters, Ltd., 1 edition, 1998.

    Google Scholar 

  9. S. Dantchev, B. Martin and S. Szeider: Parameterized proof complexity, Computational Complexity, 20 (2011), 51–85.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc, 53 (1947), 292–294.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Krajíček: Tautologies from pseudo-random generators, Bulletin of Symbolic Logic, 197–212, 2001.

    Google Scholar 

  12. J. Krajíček: Lower bounds to the size of constant-depth propositional proofs, Journal of Symbolic Logic, 59 (1994), 73–86.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Krajíček: A note on propositional proof complexity of some Ramsey-type statements, Archive for Mathematical Logic, 50 (2011), 245–255.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Krishnamurthy and R. N. Moll: Examples of hard tautologies in the propositional calculus, in: STOC 1981, 13th ACM Symposium on Th. of Computing, 28–37, 1981.

    Google Scholar 

  15. K. Pipatsrisawat and A. Darwiche: On the power of clause-learning SAT solvers as resolution engines, Articial Intelligence, 175 (2011), 512–525.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Prömel and V. Rödl: Non-Ramsey graphs are c log n-universal, Journal of Combinatorial Theory, Series A, 88 (1999), 379–384.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Pudlák: Ramsey’s theorem in Bounded Arithmetic, in: Proceedings of Computer Science Logic 1990, 308–317, 1991.

    Google Scholar 

  18. P. Pudlák: A lower bound on the size of resolution proofs of the Ramsey theorem, Inf. Process. Lett., 112 (2012), 610–611.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Pudlák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauria, M., Pudlák, P., Rödl, V. et al. The complexity of proving that a graph is Ramsey. Combinatorica 37, 253–268 (2017). https://doi.org/10.1007/s00493-015-3193-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-3193-9

Mathematics Subject Classification (2000)

Navigation