Skip to main content
Log in

Novel methods for evaluation of the Reynolds number of synthetic jets

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The paper proposes four novel methods of evaluation of synthetic jet velocity amplitude (Reynolds number in dimensionless form). The methods are based on the measurement of synthetic jet actuator electrical input (alternating current and voltage) and are applicable for loudspeaker-based actuators with air as the working fluid. Experimental validations are performed by means of hot-wire anemometry and laser Doppler vibrometry. Uncertainty and limitation of the methods are discussed, including a proposal of an adequate incompressibility criterion. Ranges of applicability are specified. Additionally, the results are compared with available literature, namely with another method based on cavity pressure measurements, a good consistency is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B :

Damping (kg/s)

Bl :

Loudspeaker voice-coil force factor (T m)

c :

Speed of sound in air (m/s)

E :

Voltage (V)

f :

Actuating frequency (Hz)

F :

Actuating force (N)

I :

Electrical current (A)

K :

Stiffness (N/m)

L :

Inductance (H)

L :

Length (m)

m :

Mass (kg)

p :

Pressure (Pa)

Pr :

Air Prandtl number

R :

Resistance (\(\Upomega\))

Re :

Reynolds number

S :

Cross-sectional area (m2)

S :

Stokes number

St :

Strouhal number

t :

Time (s)

\(T\) :

Temperature (K)

V :

Volume (m3)

x :

Displacement (m)

β :

Added mass coefficient

δ :

Damping coefficient (1/s)

\(\Updelta\) :

Amplitude (before a symbol)

ε :

Value for criterion of incompressibility, Eq. (19)

κ :

Air specific heat ratio

ω :

Actuating angular frequency (rad/s)

\(\varOmega\) :

Natural angular frequency (rad/s)

ν :

Kinematic viscosity (m2/s)

ρ :

Air density (kg/m3)

ξ :

Loss coefficient

D:

Diaphragm

eff:

Effective value

C:

Cavity

G:

Related to function generator

inc:

Incompressible

L:

Loudspeaker or linear

N:

Nozzle or nonlinear

set:

Adjusted value

W:

Wire

References

  • Al-Atabi M (2011) Experimental investigation of the use of synthetic jets for mixing in vessels. J Fluids Eng 133(9):094,503–1–094,503–4

    Article  Google Scholar 

  • Amitay M, Glezer A (2002) Controlled transients of flow reattachment over stalled airfoils. Int J Heat Fluid Flow 23(5):690–699. doi:10.1016/S0142-727X(02)00165-0

    Article  Google Scholar 

  • Arik M (2007) An investigation into feasibility of impingement heat transfer and acoustic abatement of meso scale synthetic jets. Appl Therm Eng 27(8–9):1483–1494. doi:10.1016/j.applthermaleng.2006.09.027

    Article  Google Scholar 

  • Ben Chiekh M, Ferchichi M, Béra JC (2012) Aerodynamic flow vectoring of a wake using asymmetric synthetic jet actuation. Exp Fluids 53(6):1797–1813. doi:10.1007/s00348-012-1396-z

    Article  Google Scholar 

  • Beranek LL (1993) Acoustics. Acoustical Society of America, New York

    Google Scholar 

  • Bernardini C, Carnevale M, Manna M, Martelli F, Simoni D, Zunino P (2012) Turbine blade boundary layer separation suppression via synthetic jet: an experimental and numerical study. J Therm Sci 21(5):404–412. doi:10.1007/s11630-012-0561-2

    Article  Google Scholar 

  • BIPM, Iec, IFCC, Ilac, ISO, Iupac, IUPAP, OIML (2008) Evaluation of measurement data-guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology (JCGM 100:2008, GUM 1995 with minor corrections). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  • Bruun HH (1995) Hot-wire anemometry: principles and signal analysis. Oxford University Press, Oxford

    Google Scholar 

  • Cater JE, Soria J (2002) The evolution of round zero-net-mass-flux jets. J Fluid Mech 472(1):167–200. doi:10.1017/S0022112002002264

    MATH  Google Scholar 

  • Chaudhari M, Verma G, Puranik B, Agrawal A (2009) Frequency response of a synthetic jet cavity. Exp Therm Fluid Sci 33(3):439–448. doi:10.1016/j.expthermflusci.2008.10.008

    Article  Google Scholar 

  • Chaudhari M, Puranik B, Agrawal A (2010) Heat transfer characteristics of synthetic jet impingement cooling. Int J Heat Mass Transf 53(5–6):1057–1069. doi:10.1016/j.ijheatmasstransfer.2009.11.005

    Article  Google Scholar 

  • Dodd M, Klippel W, Oclee-Brown J (2004) Voice coil impedance as a function of frequency and displacement. In: Audio Engineering Society Convention 117. Audio Engineering Society

  • Gallas Q (2002) Lumped element modeling of piezoelectric-driven synthetic jet actuators for active flow control. M.S. thesis. University of Florida, Gainesville

  • Gallas Q, Mathew J, Kaysap A, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L (2002) Lumped element modeling of piezoelectric-driven synthetic jet actuators. In: 40th AIAA aerospace sciences meeting & exhibit, AIAA Paper 2002–0125, Reno

  • Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L (2003) Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J 41(2):240–247. doi:10.2514/2.1936

    Article  Google Scholar 

  • Gallas Q, Holman R, Raju R, Mittal R, Sheplak M, Cattafesta L (2004) Low dimensional modeling of zero-net mass flux actuators. In: 2nd AIAA flow control conference, AIAA Paper 2004-2413, Portland

  • Gallas Q, Sheplak M, Cattafesta L (2005) Design optimization tool for synthetic jet actuators using lumped element modeling. Final report for NAG-1-03031, University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville

  • Gillespie MB, Black WZ, Rinehart C, Glezer A (2006) Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jets. J Heat Transf 128(10):990–1000. doi:10.1115/1.2345423

    Article  Google Scholar 

  • Holman R, Utturkar Y, Mittal R, Smith BL, Cattafesta L (2005) Formation criterion for synthetic jets. AIAA J 43(10):2110–2116. doi:10.2514/1.12033

    Article  Google Scholar 

  • Horowitz SB, Nishida T, Cattafesta LN, Sheplak M (2002) Characterization of a compliant-backplate Helmholtz resonator for an electromechanical acoustic liner. Int J Aeroacoust 1(2):183–205. doi:10.1260/147547202760236969

    Article  Google Scholar 

  • Jørgensen F (2005) How to measure turbulence with hot-wire anemometers—a practical guide. Manual, Dantec Dynamics A/S, Skovlunde

  • Kercher DS, Lee JB, Brand O, Allen MG, Glezer A (2003) Microjet cooling devices for thermal management of electronics. IEEE Trans Compon Packag Technol 26(2):359–366. doi:10.1109/TCAPT.2003.815116

    Article  Google Scholar 

  • Kim BH (2003) Modeling pulsed blowing systems for active flow control. Ph.D. thesis. Illinois Institute of Technology, Chicago

  • Kim BH, Williams DR, Emo S, Mukund A (2002) Large amplitude pneumatic oscillator for pulsed-blowing actuators. In: 22nd AIAA aerodynamic measurement technology and ground testing conference, AIAA 2002-2704, St. Louis

  • Kim BH, Williams DR, Emo S, Acharya M (2005) Modeling pulsed-blowing systems for flow control. AIAA J 43(2):314–325. doi:10.2514/1.10285

    Article  Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Fundamentals of acoustics, 4th edn. Wiley, New York

    Google Scholar 

  • Klippel W (2000) Diagnosis and remedy of nonlinearities in electrodynamical transducers. In: Audio Engineering Society Convention 109

  • Klippel W. (2005) Loudspeaker nonlinearities—causes, parameters, symptoms. In: Audio Engineering Society Convention 119

  • Klippel W (2007) Dynamic measurement of loudspeaker suspension parts. J Audio Eng Soc 55(6):443–459

    Google Scholar 

  • Kooijman G, Ouweltjes O (2009) Finite difference time domain electroacoustic model for synthetic jet actuators including nonlinear flow resistance. J Acoust Soc Am 125(4):1911–1918. doi:10.1121/1.3081514

    Article  Google Scholar 

  • Kordík J (2013) Synthetic and hybrid synthetic jet actutators—theoretical and experimental analysis. LAP LAMBERT Academic Publishing

  • Kordík J, Trávníček Z (2013a) Novel fluidic diode for hybrid synthetic jet actuator. J Fluids Eng 135(10):101,101–1–101,101–7. doi:10.1115/1.4024679

    Article  Google Scholar 

  • Kordík J, Trávníček Z (2013b) Synthetic jet actuators with large stream-wise dimensions. AIAA J 51(12):2862–2877

    Article  Google Scholar 

  • Kordík J, Trávníček Z, Šafařík P (2010) Experiments on resonance frequencies of synthetic jet actuators. J Flow Vis Image Process 17(3):203–214. doi:10.1615/JFlowVisImageProc.v17.i3.20

    Article  Google Scholar 

  • Lardeau S, Leschziner MA (2011) The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp. J Fluid Mech 683:172–211. doi:10.1017/jfm.2011.258

    Article  MATH  Google Scholar 

  • Lee A, Timchenko V, Yeoh GH, Reizes JA (2012a) Three-dimensional modelling of fluid flow and heat transfer in micro-channels with synthetic jet. Int J Heat Mass Transf 55(1–3):198–213. doi:10.1016/j.ijheatmasstransfer.2011.09.003

    Article  MATH  Google Scholar 

  • Lee A, Yeoh GH, Timchenko V, Reizes JA (2012b) Flow structure generated by two synthetic jets in a channel: effect of phase and frequency. Sens Actuators A Phys 184:98–111. doi:10.1016/j.sna.2012.07.014

    Article  Google Scholar 

  • Liu F, Horowitz S, Nishida T, Cattafesta L, Sheplak M (2007) A multiple degree of freedom electromechanical Helmholtz resonator. J Acoust Soc Am 122(1):291–301. doi:10.1121/1.2735116

    Article  Google Scholar 

  • Luo ZB, Xia ZX (2005) The mechanism of jet vectoring using synthetic jet actuators. Mod Phys Lett B 19(28–29):1619–1622. doi:10.1142/S0217984905010050

    Article  Google Scholar 

  • Luo Z-B, Xia Z-X, Xie Y-G (2007) Jet vectoring control using a novel synthetic jet actuator. Chin J Aeronaut 20(3):193–201. doi:10.1016/S1000-9361(07)60032-6

    Article  Google Scholar 

  • Malecki I (1969) Physical foundations of technical acoustics. Pergamon Press, Oxford

    Google Scholar 

  • Mallinson SG, Reizes JA, Hillier R (2001) The interaction between a compressible synthetic jet and a laminar hypersonic boundary layer. Flow Turbul Combust 66(1):1–21. doi:10.1023/A:1011468910521

    Article  MATH  Google Scholar 

  • McCormick DC (2000) Boundary layer separation control with directed synthetic jets. In: 38th AIAA aerospace sciences meeting & exhibit, AIAA Paper 2000-0519, Reno

  • McGuinn A, Farrelly R, Persoons T, Murray DB (2013) Flow regime characterisation of an impinging axisymmetric synthetic jet. Exp Therm Fluid Sci 47:241–251. doi:10.1016/j.expthermflusci.2013.02.003

    Article  Google Scholar 

  • Persoons T (2012) General reduced-order model to design and operate synthetic jet actuators. AIAA J 50(4):916–927. doi:10.2514/1.J051381

    Article  Google Scholar 

  • Persoons T, O’Donovan TS (2007) A pressure-based estimate of synthetic jet velocity. Phys Fluids 19(12):128,104–1–128,104–4. doi:10.1063/1.2823560

    Article  Google Scholar 

  • Persoons T, McGuinn A, Murray DB (2011) A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet. Int J Heat Mass Transf 54(17–18):3900–3908. doi:10.1016/j.ijheatmasstransfer.2011.04.037

    Article  MATH  Google Scholar 

  • Pierce AD (1989) Acoustics: an introduction to its physical principles and applications. Acoustical Society of America, New York

    Google Scholar 

  • Rathnasingham R, Breuer KS (1997) Coupled fluid-structural characteristics of actuators for flow control. AIAA J 35(5):832–837. doi:10.2514/2.7454

    Article  Google Scholar 

  • Rathnasingham R, Breuer KS (2003) Active control of turbulent boundary layers. J Fluid Mech 495:209–233. doi:10.1017/S0022112003006177

    Article  MATH  Google Scholar 

  • Sharma RN (2007) Fluid-dynamics-based analytical model for synthetic jet actuation. AIAA J 45(8):1841–1847. doi:10.2514/1.25427

    Article  Google Scholar 

  • Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297. doi:10.1063/1.869828

    Article  MATH  MathSciNet  Google Scholar 

  • Smith BL, Glezer A (2002) Jet vectoring using synthetic jets. J Fluid Mech 458(1):1–34. doi:10.1017/S0022112001007406

    MATH  Google Scholar 

  • Tamburello DA, Amitay M (2008) Active control of a free jet using a synthetic jet. Int J Heat Fluid Flow 29(4):967–984. doi:10.1016/j.ijheatfluidflow.2008.02.017

    Article  Google Scholar 

  • Tang H, Zhong S (2006) Lumped element modelling of synthetic jet actuators. In: The 3rd AIAA flow control conference, AIAA Paper 2006-3696, San Francisco

  • Tang H, Zhong S (2009) Lumped element modelling of synthetic jet actuators. Aerosp Sci Technol 13(6):331–339. doi:10.1016/j.ast.2009.06.004

    Article  Google Scholar 

  • Tang H, Zhong S, Jabbal M, Garcillan L, Guo F, Wood N, Warsop C (2007) Towards the design of synthetic-jet actuators for full-scale flight conditions. Flow Turbul Combust 78(3–4):309–329. doi:10.1007/s10494-006-9061-3

    Article  MATH  Google Scholar 

  • Tesař V (2007) Configurations of fluidic actuators for generating hybrid-synthetic jets. Sens Actuators A 138(2):394–403. doi:10.1016/j.sna.2007.05.027

    Article  Google Scholar 

  • Trávníček Z, Tesař V (2003) Annular synthetic jet used for impinging flow mass-transfer. Int J Heat Mass Transf 46(17):3291–3297. doi:10.1016/S0017-9310(03)00119-4

    Article  Google Scholar 

  • Trávníček Z, Fedorchenko AI, Wang AB (2005) Enhancement of synthetic jets by means of an integrated valve-less pump: part I. Design of the actuator. Sens Actuators A Phys 120(1):232–240. doi:10.1016/j.sna.2004.11.017

    Article  Google Scholar 

  • Trávníček Z, Vít T, Tesař V (2006) Hybrid synthetic jets as the nonzero-net-mass-flux synthetic jets. Phys Fluids 18(8):081,701–1–081,701–4. doi:10.1063/1.2337089

    Google Scholar 

  • Trávníček Z, Tesař V, Kordík J (2008) Performance of synthetic jet actuators based on hybrid and double-acting principles. J Vis 11(3):221–229. doi:10.1007/BF03181710

    Article  Google Scholar 

  • Trávníček Z, Broučková Z, Kordík J (2012a) Formation criterion for axisymmetric synthetic jets at high Stokes numbers. AIAA J 50(9):2012–2017. doi:10.2514/1.J051649

    Article  Google Scholar 

  • Trávníček Z, Němcová L, Kordík J, Tesař V, Kopecký V (2012b) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55(4):1279–1290. doi:10.1016/j.ijheatmasstransfer.2011.09.015

    Article  Google Scholar 

  • Trávníček Z, Broučková Z, Kordík J (2013) Visualization of synthetic jet formation in air. In: The 12th international symposium on fluid control, measurement and visualization FLUCOME2013, Nara, Japan

  • Valiorgue P, Persoons T, McGuinn A, Murray DB (2009) Heat transfer mechanisms in an impinging synthetic jet for a small jet-to-surface spacing. Exp Therm Fluid Sci 33(4):597–603. doi:10.1016/j.expthermflusci.2008.12.006

    Article  Google Scholar 

  • Wang H, Menon S (2001) Fuel-air mixing enhancement by synthetic microjets. AIAA J 39(12):2308–2319. doi:10.2514/2.1236

    Article  Google Scholar 

  • Xia Q, Zhong S (2012) A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair. Int J Heat Fluid Flow 37:64–73. doi:10.1016/j.ijheatfluidflow.2012.04.010

    Article  Google Scholar 

  • Xia Z-X, Luo Z-B (2007) Physical factors of primary jet vectoring control using synthetic jet actuators. Appl Math Mech 28(7):907–920. doi:10.1007/s10483-007-0708-z

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Grant Agency of the Czech Republic—Czech Science Foundation (Project Number P101/12/P556) and from the research plan of the Institute of Thermomechanics (Number RVO:61388998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kordík.

Appendix: derivation of \(\Updelta I\) for method D

Appendix: derivation of \(\Updelta I\) for method D

Momentum Eq. (22) of a SJA with incompressible fluid contains driving force, \(F,\) which is proportional to an unknown input electrical current, \(I.\) If the current is established, the displacement amplitude for steady state can be evaluated from the analysis of Eq. (22). To do so, an additional equation for the current must be assembled.

We are assuming a typical arrangement of a modern function generator to which the SJA is wired up directly, without any amplifier. The function generator (such as Agilent 33220A, used in the present experiments, see part Sect. 4.1) has a voltage source connected in series to an embedded internal resistance, \(R_{\mathrm{G}},\) (typically \(R_{\mathrm{G}} = 50\,\varOmega\)). The voltage source generates a voltage, \(E_{\mathrm{G}},\) that is usually not the same as the voltage set-up by a user, \(E_{\mathrm{set}},\) in a function generator menu. The voltage drop, \(E_{\mathrm{set}},\) appears only on the output resistance, \(R_{\mathrm{Z}},\) whose value is preset by users via a menu (default values typically are \(R_{\mathrm{Z}} = 50\,\varOmega\)). The relation between \(E_{\mathrm{G}}\) and \(E_{\mathrm{set}}\) follows from this arrangement and is given by a constant \(k_{\mathrm{G}} = 1 + \frac{R_{\mathrm{G}}}{R_{\mathrm{Z}}}\):

$$E_{\mathrm{G}} = k_{\mathrm{G}} E_{\mathrm{set}}$$
(28)

The electrical circuit with the SJA contains an in-series connected voltage source, \(E_{\mathrm{G}},\) internal resistance, \(R_{\mathrm{G}},\) cable resistance, \(R_{\mathrm{W}},\) and a voltage drop across the SJA loudspeaker voice-coil, \(E\) (see Fig. 6). The equation for the current follows from this arrangement:

$$k_{\mathrm{G}} E_{\mathrm{set}} - \left( R_{\mathrm{G}} + R_{\mathrm{W}}\right) I - \left( \underbrace{ R_{\mathrm{L}} I + \overbrace{Bl \dot{x}_{\mathrm{D}}}^{E_{\mathrm{emf}}} }_{E}\right) = 0.$$
(29)

Because we assume only cases with very low frequencies, the influence of loudspeaker inductance, \(L_{\mathrm{L}},\) in voltage \(E,\) is neglected [compare with Eq. (2)]. Assuming harmonic waveforms for quantities \(I,\,E_{\mathrm{set}},\,\dot{x}_{\mathrm{D}}\) [with amplitude given by Eq. (25)], and taking \(\delta ,\,\varOmega,\) and \(Bl\) as constant, we get the following steady-state current amplitude:

$$\Updelta I= \frac{k_{\mathrm{G}} \Updelta E_{\mathrm{set}}}{\sqrt{ \left( R_{\mathrm{emfa}}+R_{\mathrm{sum}}\right) ^2 + R_{\mathrm{emfb}}^2 }},$$
(30)

where:

$$R_{\mathrm{sum}}= R_{\mathrm{G}}+R_{\mathrm{W}}+R_{\mathrm{L}},$$
(31)
$$R_{\mathrm{emfa}}= \frac{2 \delta \left( Bl \omega \right) ^2}{ m^* \left[ \left( \varOmega ^2-\omega ^2\right) ^2+\left( 2 \delta \omega \right) ^2 \right] },$$
(32)
$$R_{\mathrm{emfb}}= \frac{Bl^2 \omega \left( \varOmega ^2-\omega ^2\right) }{ m^* \left[ \left( \varOmega ^2-\omega ^2\right) ^2+\left( 2 \delta \omega \right) ^2 \right] }.$$
(33)
Fig. 6
figure 6

Electrical circuit of the synthetic jet actuator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordík, J., Broučková, Z., Vít, T. et al. Novel methods for evaluation of the Reynolds number of synthetic jets. Exp Fluids 55, 1757 (2014). https://doi.org/10.1007/s00348-014-1757-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1757-x

Keywords

Navigation