Skip to main content
Log in

Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    MATH  Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  3. Bulíček, M., Haslinger, J., Málek, J., Stebel, J.: Shape optimization for Navier–Stokes equations with algebraic turbulence model: existence analysis. Appl. Math. Optim. 60(2), 185–212 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999) (electronic). Dedicated to John E. Dennis, Jr., on his 60th birthday

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program., Ser. B 100(1), 27–48 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994)

    Google Scholar 

  8. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Girault, V., Raviart, P.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  10. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000). Zbl. 0958.65028

    MATH  Google Scholar 

  11. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Advances in Design and Control, vol. 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003)

    MATH  Google Scholar 

  12. Hämäläinen, J.: Mathematical modelling and simulation of fluid flows in headbox of paper machines. PhD thesis, University of Jyväskylä (1993)

  13. Hämäläinen, J., Mäkinen, R.A.E., Tarvainen, P.: Optimal design of paper machine headboxes. Int. J. Numer. Methods. Fluids 34, 685–700 (2000)

    Article  MATH  Google Scholar 

  14. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. Advances in Design and Control, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003)

    MATH  Google Scholar 

  15. Haslinger, J., Málek, J., Stebel, J.: Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis. Control Cybern. 34(1), 283–303 (2005)

    MATH  Google Scholar 

  16. Hassanizadeh, S.M., Gray, W.G.: High velocity flow in porous media. Transp. Porous Media 2, 521–531 (1987)

    Article  Google Scholar 

  17. Ladyzhenskaya, O.: Modification of the Navier-Stokes equations for large velocity gradients. Semin. Math. V.A. Steklov Math. Inst., Leningr. 7, 57–69 (1968)

    Google Scholar 

  18. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Mathematics and its Applications, vol. 2. Gordon and Breach, New York (1969). Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu

    MATH  Google Scholar 

  19. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  20. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  21. Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3–4), 245–296 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Prandtl, L.: Bericht über Untersuchugen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5(2), 136–139 (1925)

    MATH  Google Scholar 

  23. Sokołowski, J., Zolésio, J.-P.: Shape sensitivity analysis. In: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992).

    Google Scholar 

  24. Stebel, J.: Shape optimization for Navier-Stokes equations with viscosity. PhD thesis, Charles University in Prague, Faculty of Mathematics and Physics (2007). http://www.math.cas.cz/~stebel/dis.pdf

  25. Stebel, J., Mäkinen, R., Toivanen, J.: Optimal shape design in a fibre orientation model. Appl. Math. 52(5), 391–405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng. 63(3), 261–269 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program., Ser. A 107(3), 391–408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stebel.

Additional information

Communicating Editor: Paul Dupuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslinger, J., Stebel, J. Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation. Appl Math Optim 63, 277–308 (2011). https://doi.org/10.1007/s00245-010-9121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-010-9121-x

Keywords

Navigation