Skip to main content
Log in

On the steady equations for compressible radiative gas

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the equations describing the steady flow of a compressible radiative gas with newtonian rheology. Under suitable assumptions on the data that include the physically relevant situations (i.e., the pressure law for monoatomic gas, the heat conductivity growing with square root of the temperature), we show the existence of a variational entropy solution to the corresponding system of partial differential equations. Under additional restrictions, we also show the existence of a weak solution to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buet C., Després B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectrosc. Radiat. Transf. 85, 385–418 (2004)

    Article  Google Scholar 

  2. Chandrasekhar S.: Radiative Transfer. Dover Publications, New York (1960)

    Google Scholar 

  3. Dubroca B., Feugeas J.-L.: Etude théorique et numérique d’une hiérarchie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris 329(Série I), 915–920 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Ducomet B., Feireisl E., Nečasová Š.: On a model in radiation hydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(6), 797–812 (2011)

    Article  MATH  Google Scholar 

  5. Ducomet B., Nečasová Š.: Global existence of solutions for the one-dimensional motions of a compressible gas with radiation: an “infrarelativistic model”. Nonlinear Anal. 72, 3258–3274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ducomet B., Nečasová Š.: Global weak solutions to the 1D compressible Navier–Stokes equations with radiation. Commun. Math. Anal. 8, 23–65 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Ducomet, B., Nečasová, Š.: Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: the pure scattering case. Appl. Anal. (to appear), see also the preprint series of the Mathematical Institute, Czech Academy of Sciences No. IM-2010-18, www.math.cas.cz/fichier/preprints/IM_20100414110048_26.pdf

  8. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol.19. American Matheamtical Society, Providence (1998)

  9. Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  10. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel (2009)

  11. Frehse J., Steinhauer M., Weigant W.: The Dirichlet problem for steady viscous compressible flow in 3-D. J. Math. Pure Appl. 97(2), 85–97 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Gallavotti G.: Foundations of Fluid Mechanics. Springer, Berlin (2002)

    Google Scholar 

  13. Golse F., Lions P.-L., Perthame B., Sentis R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golse F., Perthame B.: Generalized solutions of the radiative transfer equations in a singular case. Commun. Math. Phys. 106, 211–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jesslé, D., Novotný, A.: Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime, preprint of University of Toulon, see http://imath.univ-tln.fr/recherche/preprints/preprints.php

  16. Jiang P., Wang D.: Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics. Nonlinearity 23, 809–821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang P., Wang D.: Formation of singularities to the Euler-Boltzmann equations in radiation hydrodynamics. Q. Appl. Math. 70, 25–44 (2012)

    Article  MATH  Google Scholar 

  18. Jiang S., Zhou C.: Existence of weak solutions to the three dimensional steady compressible Navier–Stokes equations. Ann. IHP–Anal. Nonlinéaire 28, 485–498 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Lin, C.: Mathematical analysis of radiative transfer models, Ph.D. Thesis, University of Lille (2007)

  20. Lin C., Coulombel J.-L., Goudon T.: Shock profiles for non-equilibrium radiating gases. Phys. D 218, 83–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lowrie R.B., Morel J.E., Hittinger J.A.: The coupling of radiation and hydrodynamics. Astrophys. J. 521, 432–450 (1999)

    Article  Google Scholar 

  22. Lions P.-L.: Mathematical Topics in Fluid Dynamics, vol. 2: Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  23. Mihalas D., Weibel-Mihalas B.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1984)

    MATH  Google Scholar 

  24. Mucha P.B., Pokorný M.: On the steady compressible Navier–Stokes–Fourier system. Commun. Math. Phys. 288, 349–377 (2009)

    Article  MATH  Google Scholar 

  25. Mucha P.B., Pokorný M.: Weak solutions to equations of steady compressible heat conducting fluids. Math. Models Methods Appl. Sci. 20(5), 785–813 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Novotný A., Pokorný M.: Weak solutions for steady compressible Navier–Stokes–Fourier system for monoatomic gas and its generalizations. J. Differ. Equ. 251, 270–315 (2011)

    Article  MATH  Google Scholar 

  27. Novotný A., Pokorný M.: Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal. 43(3), 1158–1188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Novotný A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  29. Pomraning G.C.: Radiation Hydrodynamics. Dover Publications, New York (2005)

    Google Scholar 

  30. Zhong X., Jiang S.: Local existence and finite-time blow-up in multidimensional radiation hydrodynamics. J. Math. Fluid Mech. 9, 543–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Pokorný.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreml, O., Nečasová, Š. & Pokorný, M. On the steady equations for compressible radiative gas. Z. Angew. Math. Phys. 64, 539–571 (2013). https://doi.org/10.1007/s00033-012-0246-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0246-4

Mathematics Subject Classification (2010)

Keywords

Navigation