Skip to main content

Finite Embeddability Property for Residuated Lattices via Regular Languages

  • Chapter
  • First Online:
Hiroakira Ono on Substructural Logics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 23))

  • 169 Accesses

Abstract

Let \(\mathsf {V}\) be a variety of residuated lattices axiomatized by a set of identities in the language \(\{\vee ,\cdot ,1\}\). We characterize when \(\mathsf {V}\) has the finite embeddability property via regularity of a certain collection of languages. Several applications of this characterization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, \(\mathcal {L}({\mathbf {B}}^{*})\) is nothing else than the dual algebra \({\mathbf {W}}^{+}\) of unital residuated frame \({\mathbf {W}}=\langle {B^{*},B^{*}\times B^{*}\times B,N,\cdot ,{\diagdown \!\!\!\!\diagdown },{\diagup \!\!\!\!\diagup },\{\varepsilon \}}\rangle \) where \(x\mathrel {N}\langle {u,v,b}\rangle \) iff \(uxv\in L_{b}\) and \(x{\diagdown \!\!\!\!\diagdown }\langle {u,v,b}\rangle =\langle {ux,v,b}\rangle \), \(\langle {u,v,b}\rangle {\diagup \!\!\!\!\diagup }x=\langle {u,xv,b}\rangle \); for details see [10].

  2. 2.

    Identities of this form are called simple in [10]. We call them analytic because they are equivalent to analytic structural quasi-identities; for details see [4].

  3. 3.

    Gentzen collections are closely related to Gentzen residuated frames defined in [10]. More precisely, a Gentzen collection \(\mathcal {L}=\{L_{b}\subseteq B^{*}\mid b\in B\}\) for a finite partial subalgebra \({\mathbf {B}}\) of a residuated lattice \({\mathbf {A}}\) is nothing else than the basis of the nucleus induced by the unital Gentzen residuated frame \(\langle {{\mathbf {W}},{\mathbf {B}}}\rangle \), where \({\mathbf {W}}=\langle {B^{*},B^{*}\times B^{*}\times B,N,\cdot ,{\diagdown \!\!\!\!\diagdown },{\diagup \!\!\!\!\diagup },\{\varepsilon \}}\rangle \), \(x{\diagdown \!\!\!\!\diagdown }\langle {u,v,b}\rangle =\langle {ux,v,b}\rangle \), \(\langle {u,v,b}\rangle {\diagup \!\!\!\!\diagup }x=\langle {u,xv,b}\rangle \) and \(x\mathrel {N}\langle {u,v,b}\rangle \) iff \(uxv\in L_{b}\); for details see [10].

References

  1. Blok, W. J., & van Alten, C. J. (2002). The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis, 48(3), 253–271.

    Article  Google Scholar 

  2. Blok, W. J., & van Alten, C. J. (2005). On the finite embeddability property for residuated ordered groupoids. Transactions of the American Mathematical Society, 357(10), 4141–4157.

    Article  Google Scholar 

  3. Cardona, R., & Galatos, N. The finite embeddability property for non-commutative knotted extensions of RL. International Journal of Algebra and Computation. To appear

    Google Scholar 

  4. Ciabattoni, A., Galatos, N., & Terui, K. (2012). Algebraic proof theory for substructural logics: Cut-elimination and completions. Annals of Pure and Applied Logic, 163(3), 266–290.

    Article  Google Scholar 

  5. Czelakowski, J. (2001). Protoalgebraic Logics, Trends in Logic (Vol. 10). Dordrecht: Kluwer.

    Book  Google Scholar 

  6. Davey, B. A., & Priestley, H. A. (1990). Introduction to Lattices and Order. Cambridge: Cambridge University Press.

    Google Scholar 

  7. de Luca, A., & Varricchio, S. (1999). Finiteness and Regularity in Semigroups and Formal Languages. Springer-Verlag.

    Google Scholar 

  8. Ehrenfeucht, A., Haussler, D., & Rozenberg, G. (1983). On regularity of context-free languages. Theoretical Computer Science, 27(3), 311–332.

    Article  Google Scholar 

  9. Evans, T. (1969). Some connections between residual finiteness, finite embeddability and the word problem. Journal of the London Mathematical Society, s2-1(1), 399–403.

    Google Scholar 

  10. Galatos, N., & Jipsen, P. (2013). Residuated frames with applications to decidability. Transactions of the American Mathematical Society, 365(3), 1219–1249.

    Article  Google Scholar 

  11. Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics (Vol. 151). Amsterdam: Elsevier.

    Google Scholar 

  12. Henkin, L. (1953). Some interconnections between modern algebra and mathematical logic. Transactions of the American Mathematical Society, 74(3), 410–427.

    Article  Google Scholar 

  13. Henkin, L. (1956). Two concepts from the theory of models. Journal of Symbolic Logic, 21(1), 28–32.

    Article  Google Scholar 

  14. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 2, 326–336.

    Article  Google Scholar 

  15. Horčík, R. (2017). On square-increasing ordered monoids and idempotent semirings. Semigroup Forum, 94(2), 297–313.

    Article  Google Scholar 

  16. Horčík, R. (2015). Word problem for knotted residuated lattices. Journal of Pure and Applied Algebra, 219(5), 1548–1563.

    Article  Google Scholar 

  17. Jipsen, P., & Tsinakis, C. (2002). A survey of residuated lattices. In J. Martinez (Ed.), Ordered Algebraic Structures (pp. 19–56). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  18. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In C. Shannon & J. McCarthy (Eds.), Automata Studies (pp. 3–41). Princeton, NJ: Princeton University Press.

    Google Scholar 

  19. Lincoln, P., Mitchell, J., Scedrov, A., & Shankar, N. (1992). Decision problems for propositional linear logic. Annals of Pure and Applied Logic, 56(1–3), 239–311.

    Article  Google Scholar 

  20. McKinsey, J. C. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic, 6(4), 117–134.

    Article  Google Scholar 

  21. McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. The Annals of Mathematics, 45(1), 141–191.

    Article  Google Scholar 

  22. McKinsey, J. C. C., & Tarski, A. (1946). On closed elements in closure algebras. The Annals of Mathematics, 47(1), 122–162.

    Article  Google Scholar 

  23. Pin, J. E. (1997). Syntactic semigroups. In G. Rozenberg & A. Salomaa (Eds.), Handbook of Formal Languages (Vol. 1, pp. 679–746). Berlin: Springer.

    Google Scholar 

  24. Sipser, M. (2013). Introduction to the Theory of Computation. Boston, MA: Cengage Learning.

    Google Scholar 

  25. van Alten, C. J. (2005). The finite model property for knotted extensions of propositional linear logic. Journal of Symbolic Logic, 70(1), 84–98.

    Article  Google Scholar 

Download references

Acknowledgements

The author was supported by the project GBP202/12/G061 of the Czech Science Foundation and by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostislav Horčík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horčík, R. (2022). Finite Embeddability Property for Residuated Lattices via Regular Languages. In: Galatos, N., Terui, K. (eds) Hiroakira Ono on Substructural Logics. Outstanding Contributions to Logic, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-76920-8_7

Download citation

Publish with us

Policies and ethics