Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins

Abstract

Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MtABCG56 is a root- and nodule-specific gene expressed during symbiosis.
Fig. 2: MtABCG56 is a PM cytokinin exporter.
Fig. 3: MtABCG56 affects the cytokinin signalling pathway and cytokinin homeostasis.
Fig. 4: MtABCG56 modulates nodulation efficiency.

Similar content being viewed by others

Data availability

The sequence data from this article can be found in Phytozome v.12.1 database under the following accession numbers: MtABCG56 (Medtr7g098320), MtABCG37 (Medtr7g098750), MtABCG39 (Medtr7g098760), MtABCG57 (Medtr7g098370), MtLOG3 (Medtr1g057020), MtRR4 (Medtr5g036480) and MtENOD11 (Medtr3g415670). Transcriptomic data were retrieved from refs. 1,8,20,24,25,26,50. M. truncatula R108 Tnt1 transposon insertion lines, namely NF19946 and NF11085, were obtained from the Samuel Roberts Noble Foundation. Source data are provided with this paper.

References

  1. Jardinaud, M. F. et al. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol. 171, 2256–2276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gamas, P., Brault, M., Jardinaud, M. F. & Frugier, F. Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci. 22, 792–802 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wybouw, B. & De Rybel, B. Cytokinin – a developing story. Trends Plant Sci. 24, 177–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Fisher, R. F., Egelhoff, T. T., Mulligan, J. T. & Long, S. R. Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 2, 282–293 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Oldroyd, G. E. Plant science. Nodules and hormones. Science 315, 52–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Frugier, F., Kosuta, S., Murray, J. D., Crespi, M. & Szczyglowski, K. Cytokinin: secret agent of symbiosis. Trends Plant Sci. 13, 115–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Nelson, B. K., Cai, X. & Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Hwang, J. U. et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol. Plant 9, 338–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ko, D. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl Acad. Sci. USA 111, 7150–7155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, K. et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5, 3274 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Osugi, A. et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 3, 17112 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Rizzo, S., Crespi, M. & Frugier, F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18, 2680–2693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plet, J. et al. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65, 622–633 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Bucher, M. et al. The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiol. 128, 911–923 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rival, P. et al. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139, 3383–3391 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Park, J., Lee, Y., Martinoia, E. & Geisler, M. Plant hormone transporters: what we know and what we would like to know. BMC Biol. 15, 93 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. van Zeijl, A. et al. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant 8, 1213–1226 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Riefler, M., Novak, O., Strnad, M. & Schmulling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18, 40–54 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang, I., Sheen, J. & Muller, B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Zurcher, E., Liu, J., di Donato, M., Geisler, M. & Muller, B. Plant development regulated by cytokinin sinks. Science 353, 1027–1030 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Herrbach, V. et al. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. J. Exp. Bot. 68, 568–582 (2017).

    Google Scholar 

  25. Breakspear, A. et al. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26, 4680–4701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Czaja, L. F. et al. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159, 1671–1685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miri, M., Janakirama, P., Held, M., Ross, L. & Szczyglowski, K. Into the root: how cytokinin controls rhizobial infection. Trends Plant Sci. 21, 178–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Held, M. et al. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell 26, 678–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vernie, T. et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell 27, 3410–3424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mortier, V. et al. Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. N. Phytol. 202, 582–593 (2014).

    Article  CAS  Google Scholar 

  31. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol. 149, 114–122 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, H. P. & Walker, G. C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180, 5183–5191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnett, M. J., Toman, C. J., Fisher, R. F. & Long, S. R. A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc. Natl Acad. Sci. USA 101, 16636–16641 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Penmetsa, R. V. & Cook, D. R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527–530 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Roche, P. et al. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67, 1131–1143 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Rolfe, B. G., Gresshoff, P. M. & Shine, J. Rapid screening for symbiotic mutants of rhizobium and white clover. Plant Sci. Lett. 19, 277–284 (1980).

    Article  Google Scholar 

  37. Garcia, J., Barker, D. G. & Journet, E.-P. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).

  38. Tadege, M. et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 54, 335–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. De Rybel, B. et al. A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol. 156, 1292–1299 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wendrich, J. R., Liao, C. Y., van den Berg, W. A., De Rybel, B. & Weijers, D. Ligation-independent cloning for plant research. Methods Mol. Biol. 1284, 421–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Limpens, E. et al. Formation of organelle-like N-2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl Acad. Sci. USA 102, 10375–10380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quandt, H. J., Puhler, A. & Broer, I. Transgenic root-nodules of vicia-hirsuta – a fast and efficient system for the study of gene-expression in indeterminate-type nodules. Mol. Plant Microbe 6, 699–706 (1993).

    Article  Google Scholar 

  45. Boisson-Dernier, A. et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant Microbe. Interact. 14, 695–700 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Haney, C. H. & Long, S. R. Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc. Natl Acad. Sci. USA 107, 478–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Chabaud, M. et al. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).

  48. Soulemanov, A., Prithiviraj, B., Carlson, R. W., Jeyaretnam, B. & Smith, D. L. Isolation and characterization of the major nod factor of Bradyrhizobium japonicum strain 532 C. Microbiol. Res. 157, 25–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Barker, D. G. et al. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).

  50. Damiani, I. et al. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks. Front Plant Sci. 7, 794 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Warner, C. A. et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684–1687 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu, F. H. et al. Tape–Arabidopsis Sandwich – a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stomp, A.-M. in Gus Protocols (ed Gallagher, S. R.) 103–113 (Academic Press, 1992).

  54. Henrichs, S. et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 31, 2965–2980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Svačinová, J. et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8, 17 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Laloum, T. et al. Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume–rhizobia endosymbiosis. Plant J. 79, 757–768 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Cerri, M. R. et al. Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol. 160, 2155–2172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Frugier for mtcre1-1 seeds; the Noble Research Institute for mtabcg56 Tnt1 insertion mutant seeds; D. Weijers for the pPLV11_v02 binary vector; S. Bensmihen for the pDONR-ProLeEXT1 vector; A. van Zeijl for E. meliloti 2011/pMH682; B. G. Rolfe for E. meliloti 1021/pHC60 strain; M. J. Barnett for E. meliloti A2101/pE65 strain; and S. R. Long for E. meliloti Rm1021/pXLGD4. We thank E. Martinoia and J. Murray for critical comments; L. Charrier and Jie Liu for excellent technical assistance; and H. Martínková and I. Petřík for technical assistance with cytokinin profiling. This work was supported by the Polish National Science Centre (grants nos. 2015/19/B/NZ9/03548 and 2011/03/B/NZ1/02840). O.N. was supported by the Czech Science Foundation (grant no. 20-26232S) and M.G. by Swiss National Funds (project nos. 31003A_165877 and 310030_197563).

Author information

Authors and Affiliations

Authors

Contributions

M.J. devised and supervised the project. K.J. and M.J. designed the experiments and interpreted the results. K.J. performed the majority of the experiments (qRT–PCR analyses, promoter analyses, genotyping of mutants, phenotypic characterization of mutants and silenced material) and generated plasmids. J.B. generated non-tissue-specific silencing construct. A.P. generated and tested ProMtRR4 and ProABCG37,39,57 GUS fusion constructs. J.B. identified Tnt1 transposon insertion lines, assessed infection events, made the cross-section of the root/nodules, and performed light and confocal microscopy. A.P., T.J. and J.B. contributed to qRT–PCR analyses. T.J. prepared Nod factor. M.D.D. and M.G. designed and performed transport experiments and localized protein in Arabidopsis roots and N. benthamiana leaf epidermal cells. O.N. conducted quantification of endogenous cytokinins. K.J. conducted most of the statistical analyses. K.J. and J.B. prepared figures. K.J., M.G. and M.J. wrote the manuscript with the help of the co-authors. All authors saw and commented on the manuscript.

Corresponding author

Correspondence to Michał Jasiński.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Florian Frugier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MtABCG56 is a NF-induced marker gene.

Expression of MtABCG56 (blue) and its close MtABCG homologues detected in recent transcriptomic experiments. Values represent the non-log transformed fold changes (FC) in expression of selected MtABCGs after Nod factor treatment (NF) and/or E. meliloti inoculation relative to control. Red color indicates statistically significant upregulation adopted from the following transcriptomic experiments. NOD 4 h – gene expression observed only 4 h after Nod Factor (NF) treatment; n/a – no data available; RH – isolated root hairs; LCM– laser-dissected epidermal cells; ART – all root tissues from root segments. 1 – RH with 4 h and 20 h 10-8 M NF treatment respectively (P < 0.05)50; 2 – RH with 24 h 10-6 M NF treatment and E. meliloti inoculated root hairs 5 days after inoculation, in the hyperinfected sickle (skl) mutant, affected in the Ethylene Insensitive 2 (EIN2) gene (P < 0.05 and FC > 2)25; 3 – LCM with 4 h and 24 h 10−8 M NF treatment respectively (P < 0.05 and FC > 2)1; 4 –10-9 M NF-treated root segments in the presence of 1 µM of aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis (3 h) (P < 0.001 and FC > 2)20; 5 –10-8 M NF-treated root segments (6 h and 24 h) (P < 0.05 and FC > 1.5)26; 6 – 10-7 M NF-treated root segments (10 h) (P < 0.05 and FC > 1.68)24.

Extended Data Fig. 2 Tissue-specific expression patterns of MtLOG3.

Transgenic roots carrying ProMtLOG3:NLS-tdTomato construct were fixed and observed under confocal microscopy after 4 h of NF treatment. Mock-treated roots are presented in the left panel. Upper panel in each section represents optical cross-section. Images are representative of n > 15 roots obtained from two independent experiments (transformations). tdTomato was pseudocoloured in red. Scale bars, 100 µm.

Extended Data Fig. 3 Expression pattern of MtABCG56 during different stages of the symbiotic interaction.

Composite transgenic plants carrying ProMtABCG56:GUS construct were imaged at different stages after inoculation with E. meliloti (E.m) Rm1021/pXLGD4 (lacZ). Double staining using Magenta-Gal and X-Gluc allowed the visualization of the infecting E. meliloti in magenta and MtABCG56 expression in blue. All images represent roots observed 4-14 dai. Scale bars, 100 µm.

Extended Data Fig. 4 Expression of MtABCG56 and its close MtABCG homologues in M. truncatula nodule zones.

The heat map represents the normalized RNAseq reads of MtABCG56 (blue) and its close MtABCG homologues in five nodule zones with a gradient from green (minimal expression) to magenta (maximal expression). Data from Roux et al.8, FI - Meristematic Zone; FIId - Infection Zone - distal fraction; FIIp - Infection Zone - proximal fraction; IZ - Interzone; ZIII – Nitrogen-fixing Zone.

Extended Data Fig. 5 Identification of mtabcg56 mutants.

a, The MtABCG56 gene consists of 24 exons. The positions of Tnt1 retrotransposon insertions in MtABCG56 are indicated by triangles (mtabcg56-2, 1st intron; mtabcg56-1, 10th exon). Blue and red arrows indicate location of primers used for genotyping of MtABCG56 WT and mutant alleles, respectively. b-c, MtABCG56 relative expression in corresponding WT, mtabcg56-1, complemented mtabcg56-1 (b) and mtabcg56-2 (c) roots. d, MtABCG56 relative expression in WT and mtabcg56-1 transformed with empty vector, and mtabcg56-1 roots carrying complementation constructs under epidermal-specific (ProLeEXT1) or cortex-specific (ProCO2) promoters. The data represent the mean ± s.d. of 6 biological replicates obtained from two independent experiments. e-f, Shoot and root dry weights (DWs) and root length of wild type, corresponding WT (white boxes), mtabcg56-1 (e), and mtabcg56-2 (f) (grey boxes), 21 days after germination. For each box-and-whiskers plot: the centre black line represents the median; a ‘+’ represents the mean; the box extends from the 25th to 75th percentiles; the whiskers are drawn down to the 10th percentile and up to the 90th. Points below and above the whiskers are drawn as individual dots. N represents the number of individual plants obtained from two independent experiments. Identical or different letters indicate no or significant differences, respectively, P < 0.05 (b, d, e, f); P < 0.01 (c). P values, determined by the Kruskal-Wallis test with a post hoc Dunn’s multiple comparison test (b, d, e, f) and two-tailed Mann-Whitney test (c), can be found in Supplementary Data. e-f, Images of representative wild type R108, corresponding WT, mtabcg56-1 (e), and mtabcg56-2 (f), 21 days after germination.

Source data

Extended Data Fig. 6 Relative expression of MtABCG56 and its close homologues in roots carrying MtABCG56 silencing constructs under various promoters.

a,b, Relative expression of MtABCG56 and its close homologous in roots carrying MtABCG56 silencing construct under epidermal-specific (ProLeEXT1-RNAi56), cortex-specific (ProCO2-RNAi56) (a) as well as CaMV 35 S (b) promoters and empty vector as a control, 6 h after inoculation with the E. meliloti E65 strain (closed circles) or in mock-treated roots (open circles). For transgenic hairy roots, the actin gene and the dsRED gene (transformation control) were used as references. The data represent the means ± s.d. of 6 biological replicates collected from different composite plants. Identical or different letters indicate no or significant differences (P < 0.05), respectively. P values, determined by two-way ANOVA with a post hoc Tamhane’s T2 multiple comparison test (a, b), can be found in Supplementary Data.

Source data

Extended Data Fig. 7 mtabcg56 is less sensitive to CK.

a,b, Root length of R108 WT, corresponding WT and abcg56 mutants measured 14 days after transfer on BAP 10−8 M. The data represent the means ± s.d. Different letters represent significant differences (P < 0.05). P values, determined by the Kruskal-Wallis test with a post hoc Dunn’s multiple comparison test, can be found in Supplementary Data. N represents the number of individual plants.

Source data

Extended Data Fig. 8 MtABCG56 modulates nodulation efficiency.

a,b, Shoot and root dry weights (DWs), root length, and nodule numbers per shoot and root DWs, and root length of wild type R108 and corresponding WT (white boxes), mtabcg56-1 (a), and mtabcg56-2 (b) (grey boxes), 21 days after inoculation (dai) with the E. meliloti 1021 strain. For each box-and-whiskers plot: the centre black line represents the median; a ‘+’ represents the mean; the box extends from the 25th to 75th percentiles; the whiskers are drawn down to the 10th percentile and up to the 90th. Points below and above the whiskers are drawn as individual dots. Identical or different letters indicate no or significant differences (P < 0.05), respectively; n represents the number of individual plants obtained from two independent experiments. P values, determined by the Kruskal-Wallis test with a post hoc Dunn’s multiple comparison test, can be found in Supplementary Data.

Source data

Extended Data Fig. 9 Relative expression of MtABCG56 homologues.

a, Relative expression of MtABCG37, 39, 57 in different M. truncatula organs from 6-week-old plants. The data represent mean ± s.d. of 6 biological replicates obtained from two independent experiments. b, Fold changes of MtABCG37, MtABCG39, MtABCG57, 72 hai with E. meliloti compared to the mock-treated control in WT-1 and mtabcg56-1 roots. The data represent mean ± s.d. of 3 biological replicates. Identical or different letters indicate no or significant differences (P < 0.05), respectively. P values, determined by two-way ANOVA with a post hoc Tamhane’s T2 multiple comparison test, can be found in Supplementary Data. c, The tissue-specific expression pattern of MtABCG37, MtABCG39 and MtABCG57, 72 hai with E.meliloti E65 strain, in WT-1 and mtabcg56-1 roots carrying the ProMtABCG37:GUS, ProMtABCG39:GUS, ProMtABCG57:GUS constructs, respectively. Images are representative of n > 10 roots obtained from two independent experiments (transformations). Bottom panels represent cross-section of GUS-stained roots. Scale bar, 100 µm. d, Relative expression of MtABCG37, 39, 57 in roots mock-treated or treated with 1 µM iP. The data represent mean ± s.d. of 6 biological replicates obtained from two independent experiments. Identical or different letters indicate no or significant differences (P < 0.05), respectively. P values, determined by Kruskal-Wallis test with a post hoc Dunn’s multiple comparison test, can be found in Supplementary Data.

Source data

Extended Data Fig. 10 Working model for the role of ABCG-driven CK transport in an early symbiotic interaction.

a, In wild-type M. truncatula, following NF perception, LOGs expression in the epidermis triggers cytokinin conversion from nucleotide precursors (CK-NT) to bioactive forms (CK)1. Concomitantly, NF-dependent up-regulation of MtENOD11 is a part of the symbiosis signalling pathway leading to initiation of infection events56,57. CK as a presumed non-cell autonomous signal1,2,6,7 activates CRE-dependent cortical responses. MtABCG56-driven transport participates in the efflux of CK from the epidermis. As a consequence, target gene transcription is initiated, including response regulators (RRs), MtABCG56, and de novo cytokinin biosynthesis takes place. The cortical cytokinins biosynthesized in response to microsymbiont inoculation trigger extension of nodulation responses within cortical cell layers, leading to nodule development20,29,30. The ABCG-driven CK export is a part of auto-activation mechanism. b, In mtabcg56 mutant, reduced ABCG-driven CK export from epidermis, negatively affects up-regulation of MtENOD11 and infection events. In root cortex, decreased/delayed CK response potentially results in reduced/delayed nodule organogenesis. Information, published elsewhere, concerning early nodulation stages are indicated by intact lines.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data

Statistical details such as P values, F values, t values and degrees of freedom.

Source data

Source Data Fig. 1.

Statistical source data.

Source Data Fig. 2.

Statistical source data.

Source Data Fig. 3.

Statistical source data.

Source Data Fig. 4.

Statistical source data.

Source Data Extended Data Fig. 5.

Statistical source data.

Source Data Extended Data Fig. 6.

Statistical source data.

Source Data Extended Data Fig. 7.

Statistical source data.

Source Data Extended Data Fig. 8.

Statistical source data

Source Data Extended Data Fig. 9.

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarzyniak, K., Banasiak, J., Jamruszka, T. et al. Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nat. Plants 7, 428–436 (2021). https://doi.org/10.1038/s41477-021-00873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00873-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing