Skip to main content
Log in

Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants. IVM uptake, distribution, and biotransformation pathways were studied using UHPLC-MS analysis. In addition, the IVM effect on antioxidant enzymes activities, proline concentration, the content of all polyphenols, and the level of the main bioactive secondary metabolites was also tested with the goal of learning more about IVM-induced stress in the plant organism. Our results showed that the ribwort plantain was able to uptake IVM and transform it via demethylation and hydroxylation. Seven and six metabolites respectively were detected in cell suspensions and in the roots of regenerants. However, only the parent drug IVM was detected in the leaves of the regenerants. IVM accumulated in the roots and leaves of plants might negatively affect ecosystems due to its toxicity to herbivorous invertebrates. As IVM exposition increased the activity of catalase, the concentration of proline and polyphenols, as well as decreased the activity of ascorbate peroxidase and the concentration of the bioactive compounds acteoside and aucubin, long-term exposition of the ribwort plantain to IVM caused abiotic stress and might decrease the medicinal value of this herb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvinerie M, Sutra JF, Galtier P, Lifschitz A, Virkel G, Sallovitz J, Lanusse C (1999) Persistence of ivermectin in plasma and faeces following administration of a sustained-release bolus to cattle. Res Vet Sci 66:57–61

    CAS  Google Scholar 

  • Baena-Diaz F, Martinez I, Gil-Perez Y, Gonzalez-Tokman D (2018) Trans-generational effects of ivermectin exposure in dung beetles. Chemosphere 202:637–643

    CAS  Google Scholar 

  • Bartikova H, Skalova L, Stuchlikova L, Vokral I, Vanek T, Podlipna R (2015) Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab Rev 47:374–387

    CAS  Google Scholar 

  • Bartikova H, Podlipna R, Skalova L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beasley CA, Hwang T-L, Fliszar K, Abend A, McCollum DG, Reed RA (2006) Identification of impurities in ivermectin bulk material by mass spectrometry and NMR. J Pharm Biomed Anal 41:1124–1134

    CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Crump A, Omura S (2011) Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc Jpn Acad B Phys Biol Sci 87:13–28

    CAS  Google Scholar 

  • Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO (2019) Waste production in aquaculture: sources, components and managements in different culture systems. Aquac Fish 4:81–88

    Google Scholar 

  • Drotar A, Phelps P, Fall R (1985) Evidence for glutathione-peroxidase activities in cultured plant-cells. Plant Sci 42:35–40

    CAS  Google Scholar 

  • Enk CD (2006) Onchocerciasis—river blindness. Clin Dermatol 24:176–180

    Google Scholar 

  • Forster B, Boxall A, Coors A, Jensen J, Liebig M, Pope L, Moser T, Rombke J (2011) Fate and effects of ivermectin on soil invertebrates in terrestrial model ecosystems. Ecotoxicology (London, England) 20:234–245

    Google Scholar 

  • Getachew T, Dorchies P, Jacquiet P (2007) Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite (Paris, France) 14:3–14

    CAS  Google Scholar 

  • Ghorbanpour M, Farahani AHK, Hadian J (2018) Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf 148:910–922

    CAS  Google Scholar 

  • Gonzalez Canga A, Sahagun Prieto AM, Jose Diez Liebana M, Martinez NF, Vega MS, Vieitez JJ (2009) The pharmacokinetics and metabolism of ivermectin in domestic animal species. Vet J (London, England : 1997) 179:25–37

    CAS  Google Scholar 

  • Gonzalez-Tokman D, Martinez MI, Villalobos-Avalos Y, Munguia-Steyer R, Ortiz-Zayas MD, Cruz-Rosales M, Lumaret JP (2017) Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles. Chemosphere 178:129–135

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    CAS  Google Scholar 

  • Horvat AJM, Babić S, Pavlović DM, Ašperger D, Pelko S, Kaštelan-Macan M, Petrović M, Mance AD (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal Chem 31:61–84

    CAS  Google Scholar 

  • Khosropour E, Attarod P, Shirvany A, Pypker TG, Bayramzadeh V, Hakimi L, Moeinaddini M (2019) Response of Platanus orientalis leaves to urban pollution by heavy metals. J For Res 30:1437–1445

    CAS  Google Scholar 

  • Krogh KA, Soeborg T, Brodin B, Halling-Sorensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37:2202–2211

    CAS  Google Scholar 

  • Kummerova M, Zezulka S, Babula P, Triska J (2016) Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. J Hazard Mater 302:351–361

    CAS  Google Scholar 

  • Langhansova L, Landa P, Kutil Z, Tauchen J, Marsik P, Rezek J, Lou JD, Yun ZL, Vanek T (2017) Myrica rubra leaves as a potential source of a dual 5-LOX/COX inhibitor. Food Agric Immunol 28:343–353

    CAS  Google Scholar 

  • Li XC, Xie YL, Li K, Wu AZ, Xie H, Guo Q, Xue PH, Maleshibek Y, Zhao W, Guo JS, Chen DF (2018) Antioxidation and cytoprotection of acteoside and its derivatives: comparison and mechanistic chemistry. Molecules 23

  • Li YL, Wang H, Yang X (2019) Effects of catalpol on bronchial asthma and its relationship with cytokines. J Cell Biochem 120:8992–8998

    CAS  Google Scholar 

  • Lumaret JP, Errouissi F (2002) Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res 33:547–562

    CAS  Google Scholar 

  • Mesa LM, Horler J, Lindt I, Gutierrez MF, Negro L, Mayora G, Montalto L, Ballent M, Lifschitz A (2018) Effects of the antiparasitic drug moxidectin in cattle dung on zooplankton and benthic invertebrates and its accumulation in a water-sediment system. Arch Environ Contam Toxicol 75:316–326

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Navarrete S, Kemp PD, Pain SJ, Back P (2016) Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim Feed Sci Technol 222:158–167

    CAS  Google Scholar 

  • Ōmura S, Crump A (2017) Ivermectin and malaria control. Malar J 16:172

    Google Scholar 

  • Oppel J, Broll G, Löffler D, Meller M, Römbke J, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273

    CAS  Google Scholar 

  • Perez-Cogollo LC, Rodriguez-Vivas RI, Basto-Estrella GD, Reyes-Novelo E, Martinez-Morales I, Ojeda-Chi MM, Favila ME (2018) Toxicity and adverse effects of macrocyclic lactones on dung beetles: a review. Rev Mex Biodivers 89:1293–1314

    Google Scholar 

  • Podlipna R, Skalova L, Seidlova H, Szotakova B, Kubicek V, Stuchlikova L, Jirasko R, Vanek T, Vokral I (2013) Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour Technol 144:216–224

    CAS  Google Scholar 

  • Puckowski A, Stolte S, Wagil M, Markiewicz M, Łukaszewicz P, Stepnowski P, Białk-Bielińska A (2017) Mixture toxicity of flubendazole and fenbendazole to Daphnia magna. Int J Hyg Environ Health 220:575–582

    CAS  Google Scholar 

  • Qiu YL, Cheng XN, Bai F, Fang LY, Hu HZ, Sun DQ (2018) Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother 106:192–199

    CAS  Google Scholar 

  • Roeber F, Jex AR, Gasser RB (2013) Chapter Four - Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point? In: Rollinson D (ed) Advances in parasitology. Academic Press, pp 267–333

  • Römbke J, Coors A, Fernández ÁA, Förster B, Fernández C, Jensen J, Lumaret J-P, Cots MÁP, Liebig M (2010) Effects of the parasiticide ivermectin on the structure and function of dung and soil invertebrate communities in the field (Madrid, Spain). Appl Soil Ecol 45:284–292

    Google Scholar 

  • Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Bryning G, Peregrine AS, Boxall A, Solomon K (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol (Amsterdam, Netherlands) 85:229–240

    CAS  Google Scholar 

  • Shen BY, Zhao CX, Wang Y, Peng Y, Cheng JQ, Li Z, Wu L, Jin MY, Feng HH (2019) Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. J Cell Mol Med 23:4063–4075

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxid Antioxid A 299:152–178

    CAS  Google Scholar 

  • Song X, He J, Xu H, Hu XP, Wu XL, Wu HQ, Liu LZ, Liao CH, Zeng Y, Li Y, Hao Y, Xu CS, Fan L, Zhang J, Zhang HJ, He ZD (2016) The antiviral effects of acteoside and the underlying IFN-gamma-inducing action. Food Funct 7:3017–3030

    CAS  Google Scholar 

  • Stuchlíková Raisová L, Podlipná R, Szotáková B, Syslová E, Skálová L (2017) Evaluation of drug uptake and deactivation in plant: fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol Environ Saf 141:37–42

    Google Scholar 

  • Stuchlikova LR, Skalova L, Szotakova B, Syslova E, Vokral I, Vanek T, Podlipna R (2018) Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). Ecotoxicol Environ Saf 147:681–687

    CAS  Google Scholar 

  • Stuchlíková LR, Jakubec P, Langhansová L, Podlipná R, Navrátilová M, Szotáková B, Skálová L (2019) The uptake, effects and biotransformation of monepantel in meadow plants used as a livestock feed. Chemosphere:237

  • Sun P, Yu F, Lu J, Zhang M, Wang H, Xu D, Lu L (2019) In vivo effects of neomycin sulfate on non-specific immunity, oxidative damage and replication of cyprinid herpesvirus 2 in crucian carp (Carassius auratus gibelio). Aquac Fish 4:67–73

    Google Scholar 

  • Syslova E, Landa P, Stuchlikova LR, Matouskova P, Skalova L, Szotakova B, Navratilova M, Vanek T, Podlipna R (2019) Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Chemosphere 218:662–669

    CAS  Google Scholar 

  • Syslová E, Landa P, Navrátilová M, Stuchlíková LR, Matoušková P, Skálová L, Szotáková B, Vaněk T, Podlipná R (2019) Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere 234:528–535

    Google Scholar 

  • Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12

    Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    CAS  Google Scholar 

  • Vanek T, Mot’kova K, Podlipna R (2016) Accumulation of cadmium by halophytic and non-halophytic Juncus species. Theor Exp Plant Physiol 28:415–423

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Vokral I, Michaela S, Radka P, Jiri L, Lukas P, Dominika S, Katerina L, Barbora S, Lenka S (2019) Ivermectin environmental impact: Excretion profile in sheep and phytotoxic effect in Sinapis alba. Ecotoxicol Environ Saf 169:944–949

    CAS  Google Scholar 

  • Wagil M, Bialk-Bielinska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S (2015) Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res Int 22:2566–2573

    CAS  Google Scholar 

  • Wang YS, Ding MD, Pang YL, Gu XG, Gao LP, Xia T (2013) Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. Asian J Chem 25:6293–6297

    CAS  Google Scholar 

  • Young IC, Chuang ST, Hsu CH, Sun YJ, Liu HC, Chen YS, Lin FH (2017) Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogen peroxide and mechanical stimulus. BMC Complement Alternat Med:17

  • Zhang H, Wu ZM, Yang YP, Shaukat A, Yang J, Guo YF, Zhang T, Zhu XY, Qiu JX, Deng GZ, Shi DM (2019) Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-kappa B signaling. J Zhejiang Univ Sci B 20:816–827

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Daniel Paul Sampey, MDA for the English revision.

Funding

This work was supported by Czech Science Foundation, grant no. 18-08452S, by the Charles University (SVV260550) and by the projects co-funded by ERDF: EFSA-CDN (No. CZ.02.1.01/0.0/0.0/16_019/0000841) and CEPB No.CZ.02.1.01/0.0/0.0/16_019/0000738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radka Podlipná.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 238 kb)

ESM 2

(DOCX 581 kb)

ESM 3

(DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navrátilová, M., Raisová Stuchlíková, L., Skálová, L. et al. Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.). Environ Sci Pollut Res 27, 31202–31210 (2020). https://doi.org/10.1007/s11356-020-09442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09442-4

Keywords

Navigation