Skip to main content
Log in

Small signaling peptides mediate plant adaptions to abiotic environmental stress

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress.

Abstract

Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Aarabi F, Naake T, Fernie AR, Hoefgen R (2020) Coordinating sulfur pools under sulfate deprivation. Trends Plant Sci 25:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Kumar A, Jain M, Sudan J, Singh K, Kumari S, Mustafiz A (2020) C-terminally encoded peptides (CEPs) are potential mediators of abiotic stress response in plants. Physiol Mol Biol Plants 26:2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci USA 111:2029–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn MR, Haruta M, Moura DS (2020) Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol 182:1657–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell L, Turner SR (2017) A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front Plant Sci 8:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman K, Taleski M, Ogilvie HA, Imin N, Djordjevic MA (2019) CEPCEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. J Exp Bot 70:3955–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG et al (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26:4135–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci USA 113:E5519–E5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z (2021) Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol 63:53–78

    Article  CAS  PubMed  Google Scholar 

  • Chien PS, Nam HG, Chen YR (2015) A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot 66:5301–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czyzewicz N, Shi CL, Vu LD, Van De Cotte B, Hodgman C, Butenko MA, De Smet I (2015) Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. J Exp Bot 66:5229–5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delay C, Imin N, Djordjevic MA (2013) CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot 64:5383–5394

    Article  CAS  PubMed  Google Scholar 

  • Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small-peptide signals that control root nodule number, development, and symbiosis. J Exp Bot 66:5171–5181

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Wang Y, Takahashi H (2019) CLE-CLAVATA1 signaling pathway modulates lateral root development under sulfur deficiency. Plants (basel) 8:103

    Article  CAS  Google Scholar 

  • Endo S, Shinohara H, Matsubayashi Y, Fukuda H (2013) A novel pollen pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Curr Biol 23:1670–1676

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: the host controls the party. Plant Cell Environ 42:41–51

    Article  CAS  PubMed  Google Scholar 

  • Fichtner F, Dissanayake IM, Lacombe B, Barbier F (2021) Sugar and nitrate sensing: a multi-billion-year story. Trends Plant Sci 26:352–374

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JC (2020) Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci 25:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Gautrat P, Laffont C, Frugier F (2020) Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr Biol 30:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Gautrat P, Laffont C, Frugier F, Ruffel S (2021) Nitrogen systemic signaling: from symbiotic nodulation to root acquisition. Trends Plant Sci 26:392–406

    Article  CAS  PubMed  Google Scholar 

  • Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S, Palmgren M, Fuglsang AT (2020) Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. Plant J 104:433–446

    Article  CAS  PubMed  Google Scholar 

  • Goad DM, Zhu C, Kellogg EA (2017) Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol 216:605–616

    Article  CAS  Google Scholar 

  • Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Höfte H (2018) Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol 28:2452–2458

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A, Mora-Macías J, Sánchez-Rodríguez F, Cruz-Ramírez A, Herrera-Estrella L (2017) Phosphate starvation-dependent iron mobilization I-induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. Dev Cell 41:555–570

    Article  PubMed  Google Scholar 

  • Haruta M, Monshausen G, Gilroy S, Sussman MR (2008) A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47:6311–6321

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa Y, Sawa S (2019) Diverse function of plant peptide hormones in local signaling and development. Curr Opin Plant Biol 51:81–87

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Zhang D (2020) The plasticity of root systems in response to external phosphate. Int J Mol Sci 21:5955

    Article  CAS  PubMed Central  Google Scholar 

  • Huault E, Laffont C, Wen J, Mysore KS, Ratet P, Duc G, Frugier F (2014) Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet 10:e1004891

    Article  PubMed  PubMed Central  Google Scholar 

  • Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409

    Article  CAS  PubMed  Google Scholar 

  • Jeon BW, Kim MJ, Pandey SK, Oh E, Seo PJ, Kim J (2021) Recent advances in peptide signaling during Arabidopsis root development. J Exp Bot 72:2889–2902

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, von Wirén N (2020) Signaling pathways underlying nitrogen dependent changes in root system architecture: from model to crop species. J Exp Bot 71:4393–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann C, Stührwohldt N, Sauter M (2021) Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. J Exp Bot 72:5508–5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Jeon BW, Kim J (2021) Signaling peptides regulating abiotic stress responses in plants. Front Plant Sci 12:704490

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kumar S, Mohapatra T (2021) Interaction between macro- and micro-nutrients in plants. Front Plant Sci 12:665583

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDEGATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27:1718–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laffont C, Ivanovici A, Gautrat P, Brault M, Djordjevic MA, Frugier F (2020) The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat Commun 11:3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay KS, Takahashi H (2018) Nutrient-responsive small signaling peptides and their influence on the root system architecture. Int J Mol Sci 19:3927

    Article  PubMed Central  Google Scholar 

  • Li Q, Gao Y, Yang A (2020) Sulfur homeostasis in plants. Int J Mol Sci 21:8926

    Article  CAS  PubMed Central  Google Scholar 

  • Lin JS, Li X, Luo Z, Mysore KS, Wen J, Xie F (2018) NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nat Plants 4:942–952

    Article  CAS  PubMed  Google Scholar 

  • Liu D (2021) Root developmental responses to phosphorus nutrition. J Integr Plant Biol 63:1065–1090

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Zhang Y, Xu G (2020) How does nitrogen shape plant architecture? J Exp Bot 71:4415–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magori S, Oka-Kira E, Shibata S, Umehara Y, Kouchi H, Hase Y, Tanaka A, Sato S, Tabata S, Kawaguchi M (2009) Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol Plant Microbe Interact 22:259–268

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65:385–413

    Article  PubMed  Google Scholar 

  • Matsubayashi Y (2018) Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post-translational modification enzymes. Proc Jpn Acad Ser B Phys Bio Sci 94:59–74

    Article  CAS  Google Scholar 

  • Mens C, Hastwell AH, Su H, Gresshoff P, Mathesius U, Ferguson BJ (2021) Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. New Phytol 229:2525–2534

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Radzman NA, Laffont C, Ivanovici A, Patel N, Reid D, Stougaard J, Frugier F, Imin N, Djordjevic MA (2016) Different pathways act downstream of the peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol 171:2536–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11:e1001513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau C, Gautrat P, Frugier F (2021) Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. Plant Physiol 185:1216–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier V, den Herder G, Whitford R, van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222237

    Article  Google Scholar 

  • Motte H, Vanneste S, Beeckman T (2019) Molecular and environmental regulation of root development. Annu Rev Plant Biol 70:465–488

    Article  CAS  PubMed  Google Scholar 

  • Murphy E, Smith S, De Smet I (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24:3198–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaminami K, Okamoto M, Higuchi-Takeuchi M, Yoshizumi T, Yamaguchi Y, Fukao Y et al (2018) AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci USA 115:5810–5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y (2017) A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 355:284–286

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Tanaka S, Handa Y, Ito M, Sakamoto Y, Matsunaga S, Betsuyaku S, Miura K, Soyano T, Kawaguchi M, Suzaki T (2018) A NIN-LIKE PROTEIN mediates nitrate induced control of root nodule symbiosis in Lotus japonicus. Nat Commun 9:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3:17029

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commun 4:2191

    Article  PubMed  Google Scholar 

  • Okamoto S, Tabata R, Matsubayashi Y (2016) Long-distance peptide signaling essential for nutrient homeostasis in plants. Curr Opin Plant Biol 34:35–40

    Article  CAS  PubMed  Google Scholar 

  • Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I (2019) Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu Rev Plant Biol 70:153–186

    Article  CAS  PubMed  Google Scholar 

  • Ota R, Ohkubo Y, Yamashita Y, Ogawa-Ohnishi M, Matsubayashi Y (2020) Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis. Nat Commun 11:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson AG, Escobar MA (2010) Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ 33:1486–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren SC, Song XF, Chen WQ, Lu R, Lucas WJ, Liu CM (2019) CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. J Integr Plant Biol 61:1043–1061

    CAS  PubMed  Google Scholar 

  • Ristova D, Carré C, Pervent M, Medici A, Kim GJ, Scalia D, Ruffel S, Birnbaum KD, Lacombe B, Busch W, Coruzzi GM, Krouk G (2016) Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 9:rs13

    Article  PubMed  Google Scholar 

  • Roberts I, Smith S, De Rybel B, Van Den Broeke J, Smet W, De Cokere S, Mispelaere M, De Smet I, Beeckman T (2013) The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot 64:5371–5381

    Article  CAS  PubMed  Google Scholar 

  • Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo MF, Dedeyne L, Demol H, Lavenus J, Audenaert D, Gevaert K, Beeckman T, De Smet I (2016) CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot 67:4889–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum K, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply versus demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadok W, Schoppach R (2019) Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Ann Bot 124:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep 40:1305–1329

    Article  CAS  PubMed  Google Scholar 

  • Sauter M (2015) Phytosulfokine peptide signalling. J Exp Bot 66:5161–5169

    Article  CAS  PubMed  Google Scholar 

  • Segonzac C, Monaghan J (2019) Modulation of plant innate immune signaling by small peptides. Curr Opin Plant Biol 51:22–28

    Article  CAS  PubMed  Google Scholar 

  • Shani E, Salehin M, Zhang Y, Sanchez SE, Doherty C, Wang R, Mangado CC, Song L, Tal I, Pisanty O, Ecker JR, Kay SA, Pruneda-Paz J, Estelle M (2017) Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr Biol 27:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y (2016) Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis. Proc Natl Acad Sci USA 113:3897–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalak J, Nicolas KL, Vankova R, Hejatko (2021) Signal integration in plant abiotic stress responses via multistep phosphorelay signaling. Front Plant Sci 12:644823

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu LD, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite JM, Rigal A, Ramans Harborough S, Persiau G, Vanneste S, Kirschner GK, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett MJ, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I (2020) The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Mol Cell Proteom 19:1248–1262

    Article  Google Scholar 

  • Song XF, Hou XL, Liu CM (2022) CLE peptides: critical regulators for stem cell maintenance in plants. Planta 255:5

    Article  CAS  Google Scholar 

  • Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–289

    Article  CAS  PubMed  Google Scholar 

  • Stührwohldt N, Schaller A (2019) Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biol (stuttg) 1:49–63

    Article  Google Scholar 

  • Stührwohldt N, Ehinger A, Thellmann K, Schaller A (2020) Processing and formation of bioactive CLE40 peptide are controlled by posttranslational proline hydroxylation. Plant Physiol 184:1573–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Stührwohldt N, Bühler E, Sauter M, Schaller A (2021) Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. J Exp Bot 72:3427–3440

    Article  PubMed  Google Scholar 

  • Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29:526–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346:343–346

    Article  CAS  PubMed  Google Scholar 

  • Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S, Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M (2013) Too much love, a novel Kelch repeat-containing F-box protein, functions in the long distance regulation of the legume-Rhizobium symbiosis. Plant Cell Physiol 54:433–447

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235–238

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Hanada K, Kondo T, Shinozaki K (2019) Hormone-like peptides and small coding genes in plant stress signaling and development. Curr Opin Plant Biol 51:88–95

    Article  CAS  PubMed  Google Scholar 

  • Taleski M, Imin N, Djordjevic MA (2018) CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J Exp Bot 69:1829–1836

    Article  CAS  PubMed  Google Scholar 

  • Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BP (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27:2095–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233–236

    Article  CAS  PubMed  Google Scholar 

  • van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  Google Scholar 

  • Vidal EA, Alvarez JM, Araus V, Riveras E, Brooks MD, Krouk G, Ruffel S, Lejay L, Crawford NM, Coruzzi GM, Gutiérrez RA (2020) Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell 32:2094–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li H, Han Z, Zhang H, Wang T, Lin G et al (2015) Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature 525:265–268

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang G, Wu M (2016) CLE peptide signaling and crosstalk with phytohormones and environmental stimuli. Front Plant Sci 6:1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Deng M, Xu J, Zhu X, Mao C (2018) Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 74:114–122

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li X, Liao H, Staiger D, Hu Z, Yu F (2020) RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Sci Adv 6:eaaz1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby AC, Nimchuk ZL (2021) WOX going on: CLE peptides in plant development. Curr Opin Plant Biol 63:102056

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xun Q, Guo Y, Zhang J, Cheng K, Shi T, He K, Hou S, Gou X, Li J (2016) Genome-wide expression pattern analyses of the arabidopsis leucine-rich repeat receptor-like kinases. Mol Plant 9:289–300

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi YL, Ishida T, Yoshimura M, Imamura Y, Shimaoka C, Sawa S (2017) A collection of mutants for CLE-peptide-encoding genes in Arabidopsis generated by CRISPR/Cas9-mediated gene targeting. Plant Cell Physiol 58:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Assmann SM (2018) Inter-relationships between the heterotrimeric Gbeta subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. Plant Cell Environ 41:2475–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109:14693–146938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Durán R, Zhu JK (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115:13123–13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Jiang W, Zayed O, Liu X, Tang K, Nie W, Li Y, Xie S, Li Y, Long T, Liu L, Zhu Y, Zhao Y, Zhu JK (2020) The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev 8:nwaa149

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2019) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251:3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We do apologize to those whose great work was not cited. We would like to thank other lab members for their critical reading and comments on the manuscript. This work is supported by a starting fund from Jiangxi Agricultural University (9232308314) to HBH. We also acknowledge the EMBO for supporting JH with a long-term fellowship (ALTF 217-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Zhao, W., Li, W. et al. Small signaling peptides mediate plant adaptions to abiotic environmental stress. Planta 255, 72 (2022). https://doi.org/10.1007/s00425-022-03859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03859-6

Keywords

Navigation