Acta Chir Orthop Traumatol Cech. 2023; 90(3):188-197 | DOI: 10.55095/achot2023/027

Antimicrobial Activity of the Most Common Antibiotic-Releasing Systems Employed in Current Orthopedic Surgery: in vitro StudyOriginal papers

R. ŠTÍCHA1, P. FULÍN1,*, O. NYČ2, V. GAJDOŠOVÁ3, D. POKORNÝ1, M. ŠLOUF3
1 1. Orthopedic Clinic First Faculty of Medicine Charles University and University Hospital in Motol, Prague
2 Department of Medical Microbiology Second Faculty of Medicine Charles University and University Hospital in Motol, Prague
3 Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague

PURPOSE OF THE STUDY:
Infections of joint replacements represent one of the most serious problems in contemporary orthopedics. The joint infections treatment is usually multimodal and involves various combinations of drug delivery and surgical procedures. The aim of this study was to evaluate and compare the bacteriostatic and bactericidal properties of the most common antibiotic carriers used in orthopedic surgery: bone cements mixed with antibiotic and porous calcium sulfate mixed with antibiotic.

MATERIAL AND METHODS:
Three commercial bone cements (Palacos®, Palacos® R+G, Vancogenx®) and commercial porous sulfate (Stimulan®) were prepared with a known concentration of vancomycin (a glycopeptide antibiotic). Specifically, for the purpose of our study, the testing specimens were prepared to release 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 mg of vancomycin into 1 liter of solution. The specimens with increasing amount of antibiotic were placed in a separate tubes containing 5 mL of Mueller-Hinton broth inoculated with a suspension (0.1 m, McFarland 1) of the reference strain CCM 4223 Staphylococcus aureus to evaluate their bacteriostatic properties (broth dilution method). After this initial incubation and evaluation of the broth dilution method, an inoculum from each tube was transferred onto blood agar plates. After another 24-hour incubation under the same conditions, we evaluated the bactericidal properties (agar plate method). As many as 132 of independent experiments were performed (4 specimens × 11 concentrations × 3 repetitions = 132).

RESULTS:
The bacteriostatic properties of all investigated samples were excellent, perhaps with the exception of the first bone cement (Palacos®). The sample Palacos® started to exhibit bacteriostatic properties at concentrations ≥ 8 mg/mL, while all other samples (Palacos R+G®, Vancogenx®, and Stimulan®) were bacteriostatic in the whole concentration range starting from 1 mg/mL. The bacteriocidic properties did not show such clear trends, but correlated quite well with different properties of the investigated samples during mixing - the most homogeneous samples seemed to exhibit the best and the most reproducible results.

DISCUSSION:
The reliable and reproducible comparison of ATB carriers is a difficult task. The situation is complicated by high numbers of local antibiotic carriers on the market, numerous antibiotics used, and differences in clinical trials at different laboratories. Simple in vitro testing of bacteriostatic and bacteriocidic properties represents a simple and efficient approach to the problem.

CONCLUSIONS:
The study confirmed that the two most common commercial systems used in the orthopedic surgery (bone cements and porous calcium sulfate) prevent bacterial growth (bacteriostatic effect), but they may not be 100% efficient in complete elimination of bacteria (bacteriocidic effect). The scattered results in the case of bacteriocidic tests seemed to be connected with the homogeneity of ATB dispersion in the systems and with the lower reproducibility of the employed agar plate method.

Keywords: local release of antibiotics; bone cements; calcium sulfate; antimicrobial susceptibility

Published: June 22, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ŠTÍCHA R, FULÍN P, NYČ O, GAJDOŠOVÁ V, POKORNÝ D, ŠLOUF M. Antimicrobial Activity of the Most Common Antibiotic-Releasing Systems Employed in Current Orthopedic Surgery: in vitro Study. Acta Chir Orthop Traumatol Cech.. 2023;90(3):188-197. doi: 10.55095/achot2023/027. PubMed PMID: 37395426.
Download citation

References

  1. Abosala A, Ali M. The use of calcium sulphate beads in periprosthetic joint infection, a systematic review. J Bone Jt Infect. 2020;5:43-49. Go to original source...
  2. Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev. 2021;174:30-52. Go to original source...
  3. Egawa S, Hirai K, Matsumoto R, Yoshii T, Yuasa M, Okawa A, Sugo K, Sotome S. Efficacy of antibiotic-loaded hydroxyapatite/collagen composites is dependent on adsorbability for treating staphylococcus aureus osteomyelitis in rats. J Orthop Res. 2020;38:843-851. Go to original source... Go to PubMed...
  4. El-Husseiny M, Patel S, MacFarlane RJ, Haddad FS. Biodegradable antibiotic delivery systems. J Bone Joint Surg Br. 2011;93:151-157. doi: 10.1302/0301-620X.93B2.24933. Go to original source... Go to PubMed...
  5. Fleiter N, Walter G, Bösebeck H, Vogt S, Büchner H, Hirschberger W, Hoffmann R. Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Joint Res. 2014;3:223. Go to original source... Go to PubMed...
  6. French GL. Bactericidal agents in the treatment of MRSA infections-the potential role of daptomycin. J Antimicrob Chemother. 2006;58:1107-1117. Go to original source... Go to PubMed...
  7. Gajdosova V, Strachota B, Strachota A, Michalkova D, Krejcikova S, Fulin P, Nyc O, Brinek A, Zemek M, Slouf M. Biodegradable thermoplastic starch/polycaprolactone blends with co-continuous morphology suitable for local release of antibiotics. Materials. 2022;15:1101. Go to original source... Go to PubMed...
  8. Garvin K, Feschuk C. Polylactide-polyglycolide antibiotic implants. Clin Orthop Relat Res. 2005;437:105-110. Go to original source... Go to PubMed...
  9. Hurych J, Štícha R. Lékařská mikrobiologie: repetitorium. 2. vyd., Stanislav Juhaňák - Triton, Praha, 2021.
  10. Jiang N, Dusane DH, Brooks JR, Delury CP, Aiken SS, Laycock PA, Stoodley P. Antibiotic loaded β-tricalcium phosphate/calcium sulfate for antimicrobial potency, prevention and killing efficacy of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Sci Rep. 2021;11:1446. Go to original source... Go to PubMed...
  11. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749-1755. Go to original source... Go to PubMed...
  12. Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59:1223-1232. doi: 10.2165/00003495-200059060-00003. Go to original source... Go to PubMed...
  13. Kawanabe K, Okada Y, Matsusue Y, Iida H, Nakamura T. Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic. J Bone Joint Surg Br. 1998;80:527-530. Go to original source...
  14. Kilinç S, Pazarci Ö, Keklikcioğlu Çakmak N, Taş A. Does the addition of poly(glycolide-co-lactide) to teicoplanin-containing poly(methyl methacrylate) beads change the elution characteristics? Indian J Orthop. 2020;54:71-75. Go to original source... Go to PubMed...
  15. Kowalewski M, Pawliszak W, Zaborowska K, Navarese EP, Szwed KA, Kowalkowska ME, Kowalewski J, Borkowska A, Anisimowicz L. Gentamicin-collagen sponge reduces the risk of sternal wound infections after heart surgery: meta-analysis. J Thorac Cardiovasc Surg. 2015;149:1631-1640.e1-6. Go to original source... Go to PubMed...
  16. Kowalska-Krochmal B, Dudek-Wicher R. The Minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021;10:165. Go to original source... Go to PubMed...
  17. Krejčíková S, Ostafinska A, Šlouf M. Termoplastifikovaný škrob a jeho aplikace. Chem Listy. 2018;112:531-537.
  18. Kühn KD, Renz N, Trampuz A. [Local antibiotic therapy]. Unfallchirurg. 2017;120:561-572. Go to original source... Go to PubMed...
  19. Leta TH, Lygre SHL, Schrama JC, Hallan G, Gjertsen JE, Dale H, Furnes O. Outcome of revision surgery for infection after total knee arthroplasty: results of 3 surgical strategies. JBJS Rev. 2019;7:e4. Go to original source... Go to PubMed...
  20. Lew PDP, Waldvogel PFA. Osteomyelitis. Lancet. 2004;364:369-379. Go to original source... Go to PubMed...
  21. Mathews CJ, Weston VC, Jones A, Field M, Coakley G. Bacterial septic arthritis in adults. Lancet. 2010;375:846-855. Go to original source... Go to PubMed...
  22. McPherson E, Dipane M, Sherif S. Dissolvable antibiotic beads in treatment of periprosthetic joint infection and revision arthroplasty-the use of synthetic pure calcium sulfate (Stimulan®) impregnated. ReconRev. 2013;3. https://doi.org/10.15438/rr.v3i1.27. Go to original source...
  23. Melicherčík P. Využití lokálních nosičů antibiotik při léčbě infekcí pohybového aparátu. 1. LF UK, Praha, 2011, pp 94.
  24. Mendel V, Simanowski HJ, Scholz HC, Heymann H. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Arch Orthop Trauma Surg. 2005;125:363-368. Go to original source... Go to PubMed...
  25. Ostafińska A, Mikešová J, Krejčíková S, Nevoralová M, Šturcová A, Zhigunov A, Michálková D, Šlouf M. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties. Int J Biol Macromol. 2017;101:273-282. Go to original source... Go to PubMed...
  26. Penner MJ, Masri BA, Duncan CP. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplasty. 1996;11:939-944. Go to original source... Go to PubMed...
  27. Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55:1679-1698. Go to original source... Go to PubMed...
  28. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8:5744-5794. Go to original source... Go to PubMed...
  29. Shekhawat D, Singh A, Banerjee MK, Singh T, Patnaik A. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram Int. 2021;47:3013-3030. Go to original source...
  30. Šlouf M, Kruliš Z, Ostafinska A, Nevoralová M, Krejčíková S, Horák P, Fulín P, Jahoda D, Pokorný D, Ujčic A. Polymerní termoplastická biodegradovatelná kompozice pro výrobu vložek k léčení a prevenci lokálních infektů a způsob její přípravy. Ústav makromolekulární chemie - Univerzita Karlova, Praha, Česká republika, 2017, CZ 307056 B6.
  31. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters Version 10.0, 2020;2020, pp 12-12.
  32. Ujcic A, Krejcikova S, Nevoralova M, Zhigunov A, Dybal J, Krulis Z, Fulin P., Nyc O., Slouf M. Thermoplastic starch composites with titanium dioxide and vancomycin antibiotic: preparation, morphology, thermomechanical properties, and antimicrobial susceptibility testing. Front Mater. 2020;7:9. Go to original source...
  33. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4:157-163. Go to original source... Go to PubMed...
  34. Wahlig H. Gentamicin-PMMA beads: a drug delivery system in the treatment of chronic bone and soft tissue infections. J Antimicrob Chemother. 1982;10:463-465. Go to original source... Go to PubMed...
  35. Wu C, Chang J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus. 2012;2:292-306. Go to original source... Go to PubMed...