Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging

Abstract

A new hexadentate 1,4,7-triazacyclononane-based ligand bearing three coordinating methylene-(2,2,2-trifluoroethyl)phosphinate pendant arms was synthesized and its coordination behaviour towards selected divalent (Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and trivalent (Cr3+, Fe3+, Co3+) transition metal ions was studied. The ligand forms stable complexes with late divalent transition metal ions (from Co2+ to Zn2+) and the complexes of these metal ions are formed above pH ∼3. A number of complexes with divalent metal ions were structurally characterized by means of single-crystal X-ray diffraction. The complex of the larger Mn2+ ion adopts a twisted trigonally antiprismatic geometry with a larger coordination cavity and smaller torsion of the pendant arms, whereas the smaller ions Ni2+, Cu2+ and Zn2+ form octahedral species with a smaller cavity and larger pendant arm torsion. In the case of the Co2+ complexes, both coordination arrangements were observed. The complexes with paramagnetic metal ions were studied from the point of view of potential utilization in 19F magnetic resonance imaging. A significant shortening of the 19F NMR longitudinal relaxation times was observed: a sub-millisecond range for complexes of Cr3+, Mn2+ and Fe3+ with symmetric electronic states (t2g3 and HS-d5), the millisecond range for the Ni2+ and Cu2+ complexes and tens of milliseconds for the Co2+ complex. Such short relaxation times are consistent with a short distance between the paramagnetic metal ion and the fluorine atoms (∼5.5–6.5 Å). Among the redox-active complexes (Mn3+/Mn2+, Fe3+/Fe2+, Co3+/Co2+, Cu2+/Cu+), the cobalt complexes show sufficient stability and a paramagnetic–diamagnetic changeover with the redox potential lying in a physiologically relevant range. Thus, the Co3+/Co2+ complex pair can be potentially used as a smart redox-responsive contrast agent for 19F MRI.

Graphical abstract: Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2024
Accepted
25 Mar 2024
First published
26 Mar 2024
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2024, Advance Article

Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging

F. Koucký, T. Dobrovolná, J. Kotek, I. Císařová, J. Havlíčková, A. Liška, V. Kubíček and P. Hermann, Dalton Trans., 2024, Advance Article , DOI: 10.1039/D4DT00507D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements