The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Causal Discovery in Hawkes Processes
by Minimum Description Length

Amirkasra Jalaldoust,'> Katefina Hlavackova-Schindler, ** Claudia Plant, 3

! Department of Computer Science, Columbia University, New York, USA
2 Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
3 Faculty of Computer Science, University of Vienna, Vienna, Austria
4 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
> ds:UniVie, University of Vienna, Vienna, Austria
jalaldoust@cs.columbia.edu, katerina.schindlerova@univie.ac.at, claudia.plant@univie.ac.at

Abstract

Hawkes processes are a special class of temporal point pro-
cesses which exhibit a natural notion of causality, as occur-
rence of events in the past may increase the probability of
events in the future. Discovery of the underlying influence
network among the dimensions of multi-dimensional tem-
poral processes is of high importance in disciplines where
a high-frequency data is to model, e.g. in financial data
or in seismological data. This paper approaches the prob-
lem of learning Granger-causal network in multi-dimensional
Hawkes processes. We formulate this problem as a model
selection task in which we follow the minimum descrip-
tion length (MDL) principle. Moreover, we propose a gen-
eral algorithm for MDL-based inference using a Monte-Carlo
method and we use it for our causal discovery problem.
We compare our algorithm with the state-of-the-art baseline
methods on synthetic and real-world financial data. The syn-
thetic experiments demonstrate superiority of our method in
causal graph discovery compared to the baseline methods
with respect to the size of the data. The results of experiments
with the G-7 bonds price data are consistent with the experts’
knowledge.

1 Introduction

In many applications, one needs to deal with multi-
dimensional sequential data of irregular or asynchronous na-
ture occurring in a continuous time. The examples can be
preferences of users in in social networks, interactions of ar-
eas during earthquakes and aftershocks in geophysics (Veen
and Schoenberg 2008) or high-frequency signals in finan-
cial data (Bacry, Mastromatteo, and Muzy 2015). These data
can be seen as event sequences containing multiple event
types and modeled by a multi-dimensional Hawkes process
(MHP)(Hawkes 1971), also known as a self-exciting tem-
poral point process. The main advantage of using Hawkes
processes over e.g. Poisson processes is that they permit to
model the influence of the past events on the current be-
havior of the process, due to their memory property. Eichler
(Eichler, Dahlhaus, and Dueck 2017) introduced the graphi-
cal Granger causal model for MHP in the form of an autore-
gressive structure for the intensities of each marginal pro-
cess.
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Methods to discover Granger-causal graphs in MHP search
for a solution of a variable selection problem, mostly in
terms of an optimum of a corresponding objective func-
tion constructed for the MHP at hand (Zhou, Zha, and Song
2013a; Xu, Farajtabar, and Zha 2016; Zhou, Zha, and Song
2013b). These methods usually show good performance in
scenarios with ”long” horizon 7', i.e. when T is greater by
several orders of magnitude than the dimension of MHP p,
however in the opposite case of ’short” horizon, they of-
ten suffer from over-fitting. We define short event sequence
when the time horizon is at most of order 100 - p for a p-
dimensional event sequence.

In our paper we approach causal discovery in MHP by
the minimum description (MDL) principle which was as a
model selection method introduced in (Rissanen 1998) and
developed in (Griinwald and Roos 2019). Although MDL
has been already applied to graphical Granger-causality in
(Hlavackova-Schindler and Plant 2020a) for Gaussian time
series with a significant precision superiority over baseline
methods, application of MDL to Hawkes processes is more
challenging due to the nature of the processes. The contribu-
tions of our paper are summarized as follows.

* We present a general procedure for practical estima-
tion of a MDL objective function based on Monte-Carlo
(MC) methods for estimation of integrals.

* Using this procedure we construct an MDL objective
function for inference of the Granger-causal graph for
multi-dimensional Hawkes processes.

* We evaluate the performance of our causal discovery al-
gorithm on both synthetic and real-world data, and com-
pare our results with the baseline methods. Our method
demonstrates a significant superiority in causal discovery
for short event sequences.

The paper is organized as follows: The multi-dimensional
Hawkes processes and the minimum description length prin-
ciple are defined in Section 2. Section 3 presents our method
to estimate a general MDL function. Causal discovery in
Hawkes processes is proposed in Section 4. Related work is
discussed in Section 5. Section 6 presents experiments and
discussion and our conclusion is in Section 7. The Appendix
contains a proof and experimental setup.



2 Preliminaries
2.1 Notation

Scalar variables are denoted by regular letters, multi-
dimensional variables bold, random variables by capital let-
ters (e.g. X)), the support of each random variable by the
same calligraphic letter (e.g. X') and any realization or point
in the support is denoted by lower-case letter (e.g. ). Ma-
trices are denoted by Greek letters, and for matrices such as
w, w; denotes the 7-th row. All vectors are column vectors.

2.2 Temporal Point Processes

A temporal point process is a random process which is used
to model occurrence of events in time. Each realization is
a list of events {t;} with ¢; € [0,7] and T is called hori-
zon. The interval [0, 7] denotes the time window in which
the process was observed. A temporal point process can
be equivalently represented by a counting process U where
U(t) for t € [0,T] is the number of events happened prior
to time ¢. Figure la visualizes a realization of a three-
dimensional temporal point process. For a temporal point
process one may define the conditional intensity function

A = E[dU ()] = lim E[U(t+A0) - U], (1)

where H; is called the filtration at time ¢ consisting of all
events prior to time ¢. A multi-dimensional temporal point
process is a set of coupled temporal point processes and
it can represented by a set of counting processes {U; }7_,
where Uj;(t) denotes the number of events in the i-th process
prior to time ¢. Similarly, the conditional intensity function
for the ¢-th dimension is

\i(t) =

Granger-Causality in Temporal Point Processes In
multi-dimensional time-series variable x; Granger-causes
variable ; when the future of x; is better predicted when
taking into account the past of variable x; (Granger 1969).
In multi-dimensional temporal point processes the events in
the j-th dimension Granger-cause the events in the i-th di-
mension if (Kim et al. 2011)

Ai(t) = E[dU;(t)[He] # E[dUs (t)[H, ], ©)

where 7, 7 is the history prior to time ¢ excluding events in
the j-th dimension.

E[dUi(t”Ht]. 2)

Hawkes Processes Introduced in (Hawkes 1971), a
Hawkes process is a temporal point process with the inten-
sity function following the equation

A(t) =+ / o(t — 7)dU(7),

where 1 > 0 is the exogenous baseline intensity, and ¢ :
RS — Ry is the kernel function, see e.g. Fig 1b. Similarly,
a multi-dimensional Hawkes process (MHP) is defined to be
a multi-dimensional temporal point process with conditional
intensity function at each dimension ¢ = 1, ..., p following

“

N =+ [ est-nam. ©
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Figure 1: (a) Realization of a 3-dimensional temporal point
process, and its corresponding counting process; (b) The in-
tensity function of a 1-dim Hawkes process with exponential
decay kernel.

Granger-Causality in MHP Eichler et al. in (Eichler,
Dahlhaus, and Dueck 2017) have shown that the Granger-
causality structure of MHP is fully encoded in the corre-
sponding kernel functions of the model. The result is stated
in the following theorem.

Theorem 1 (Eichler et al., 2017). Let U = {U;}!_, be a p-
dimensional Hawkes process with conditional intensity func-
tions defined as in Eq. 5. Then the events in the j-th dimen-
sion do not Granger-cause events in the i-th dimension if

only if ¢;; = 0.

2.3 Minimum Description Length

The minimum description length (MDL), introduced into
statistical modeling by (Rissanen 1998; Barron, Rissanen,
and Yu 1998) is a principle based on compression of infor-
mation. The most common version of the method as a model
selection principle makes use of two-part codes: the first part
represents the information that one is trying to learn, such as
the index of a model in a family of models (model selection)
or parameter values (parameter estimation); the second part
is an encoding of the data, given the model in the first part.
Statistical MDL learning is strongly connected to proba-
bility theory and statistics through the correspondence be-
tween codes and probability distributions. While Bayesian
approach is often useful in constructing efficient MDL
codes, the MDL framework also accommodates other codes
that have no assumption about the data-generating process.
An example is the Shtarkov normalized maximum likeli-
hood code (Shtarkov 1978), which we will use. Based on
(Griinwald and Roos 2019), statistical models (families of
probability distributions) are of the form M = {p(.|0) : 0 €
©®} parametrized by a parameter space © (usually a subset
of a Euclidean space). Further, we partition the parameter



space © into a family of disjoint restricted parameter sub-
spaces {©., : v € I'} so that we can define families of mod-
els {M, : v € I'} where each M, = {p(.|0) : 6 € O,}
is a statistical model used to model data x € X, and each
p(.|@) represents a probability density function on X'

Normalized Maximum Likelihood Distribution The
normalized maximum likelihood (NML) distribution pro-
vides a general technique to apply the minimum description
length (MDL) principle to statistical model selection. In its
general form, the NML distribution and the MDL estimators
depend on a function v : ® — R{ named luckiness func-
tion. The NML distribution for each model v € T is given
by

pN]\/[L(w) _ maXae(a., p(.’]}|0)’l)(0)
vly S maxoce., p(s]0)v(0)ds
(It is well-defined whenever the normalizing integral in (6)

is finite.) The logarithm of this integral, called the model
complexity is

(6)

COMP(My;v) = 1og/ max p(s|@)v(0)ds. (7)
X 0coO,

To simplify the notation, for each x € X and 0 € O let
R,(6;x) = p(x|0)v(0), and let

7y (0; ) = log R, (0; x) = log p(z|6) + logv(0).  (8)

For any luckiness function v, we define the MDL estimator
based on v for a specific model M., C M as
90‘.,/(:13) = argmin —7,(6; ). ©)
6co,
Suppose now a collection of models M., indexed by a fi-
nite I' and specified luckiness functions v, on ®-, for each
~ € I and we pick a uniform distribution 7 on I'. If we base
the model selection on NML, we pick over I' the model min-
imizing function

Ly(v; @) = — logm(y) — log py 3 ()

= - IOg 77(’7) - Tv(ev\'y(w); CC)
+ COMP(My;v).
The MDL function incorporates a trade-off between the
goodness-of-fit measured by r,, (91)‘.,(33); x) and the model
complexity measured by COMP(M;v). Finally, the
model selection based on MDL picks

(10)

~MDL

& = argmin L, (v; ). (11)
~er
3  Our Method to Estimate the MDL
Function

We propose a new method to estimate the MDL objective
function L, (v;«) for a given data @ € X, a fixed model
M, C M, and an appropriate luckiness function v. We fur-
ther apply this general method to the problem of causal dis-
covery in Hawkes processes.

According to Eq. 10, in order to estimate L,,(v; «), the terms

log m(7), 74(0yy(x);x), and COM P(M.;v) should be
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computed. As 7(7y) is known to us a priori, the first term
log () is computable. We propose how to compute the

other two terms - goodness-of-fit r,, (6, (); =) and model
complexity COM P(M.;v).

3.1 Computing the Goodness-of-Fit

Finding the MDL estimator éq,h(w) is the result of a min-
imization process over the restricted parameter space ©..
Convex optimization problems have a unique solution and
there are efficient methods to find it. To this end, we require
two conditions:

1. The restricted parameter space ©., is a convex set.

2. The objective function measuring the negative goodness-
of-fit

—1,(0;x) = —log(p(x|@)) — log(v(0))
is a convex function.

Condition 1 depends on an appropriate partitioning of the
parameter space and can be fulfilled in many scenarios (e.g.
when ©, is a Euclidean space or a positive cone of it). Con-
dition 2 can be fulfilled by an appropriate choice of lucki-
ness function v; the objective function in Eq. (12) involves
two terms:

12)

i. The negative log-likelihood term — log p(|8).

ii. The negative log-luckiness term — log v(8).

The term (i) depends on the problem in hand, however, in
many statistical scenarios it is convex in the model parame-
ter @ (e.g. in linear regression models and exponential fami-
lies). The term (ii) is convex in @ for any log-concave choice
of v. Therefore, the summation of the two convex terms re-
sults in a convex objective function. In summary, to have a
convex optimization problem for finding the MDL estimator

0, (x), we require:

1. © to be partitioned into convex subsets {@~ }ycr.
2. Log-likelihood to be a concave function.

3. Luckiness v to be selected as a log-concave function.

3.2 Estimating Model Complexity

In this subsection we propose estimation of the model com-
plexity by using Monte Carlo (MC) simulation for estima-
tion of integrals. According to definition of R, and Eq. 9
model complexity can be rewritten as

COMP(M.,;U):log/ Ry(0,,(s);8)ds.  (13)
X

As discussed in subsection 3.1, we can efficiently compute a

unique MDL estimator évh(s) for any data s € X. For any
parameter z € ©, we have

Rv(év\w(s)Q s)
p(sl0 = z)
Rv(évl'y(X)§X)

p(X1[0 = z)
Ry(,4(X); X)
p(X16)

COMP(My;v) = log/ p(s|0 = z)ds

X

= log Ex ~p(|0=2)|

= logJEXNp[



Note that in order to rewrite the integral as above, the term
p(s|@ = z) should be positive for all data s € X. The term
inside the expectation is a function of the parameter z € ®
and the random variable X, so for simplicity we define

Ry (Bu)y(5); 8

Quy(8,2) = (p(s|(z)))
_ 2(816014(9))0(Bu1 (5))

p(s|z)

15)

so that we have
COMP(My;v) = logEXNp[QUh(X,G)w =z]. (16)

We can also randomize z and then take the expected value.
As the general MDL method does not impose any distribu-
tion for 6, we can assume any arbitrary full support distribu-
tion on © and take random samples of @ from it. Therefore,

COMP(My;0) = 1og Bomp[Exop|Qui (X, 6)]6 = 2]
= IOgEX,GNp[QvH(Xve)]' (17)

We estimate the last expectation by taking multiple joint
samples of X, 6 (Line 1 and Line 3 of Algorithm 1), and
by computing ), at these points (Line 5 of Algorithm 1)
we report the average value as an unbiased estimation of
COM P(My;v). One can also compute confidence inter-
vals for our estimation using sample variance of the random
draws of @,y (X, 8). Our steps to estimate model complex-
ity are summarized in Algorithm 1. First, according to dis-
tribution p(@), we draw random parameters 21, 2o, ..., 2N
where N is the number of MC simulations. Next, for each
parameter z;, we simulate the data s; according to the distri-
bution p(X |0 = z;). Finally, computing the MDL estimator

0, (s;) enables us to compute

p(si|9v\'y(si))v(0v\'y(si))

p(silzi)
which is an i.i.d. sample of Q,,(X,8). According to Eq.
17, the mean value of random samples @1, @3, ..., QN is an
unbiased estimator for model complexity. Furthermore, the
accuracy of our estimation increases by increasing number
of MC simulations V; In fact, by the central limit theorem,
the variance of our estimator for model complexity linearly
decreases with increasing N.

Qi = ; (13)

4 Causal Discovery in Hawkes Processes

In this section we propose an MDL-based algorithm for
causal discovery in Hawkes processes. We restrict ourselves
to MHP with exponential decay kernel functions (exp-
MHP). This is a class of MHP with kernels defined as

$ij(t) = cvj exp(—Pijt), (19)
where o is a p X p matrix called the influence coefficient
matrix with non-negative entries, and 3 is a known constant

pxp matrix called decay matrix with positive entries. Hence,
the intensity function for the i-th dimension is

p t
M) =i+ Y [ asesp(-Biy(e - s)av(s), 20)
j=17-%
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Algorithm 1: Estimate COM P (M;v)

Input: Model ~.
Given: Luckiness v, number of MC simulations V.
Output: Estimation of model complexity C.

: Draw i.i.d. parameters 21, 2o, . .
cforl1 <i:< Ndo
Draw data s; w.r.t. p(X |0 = z;)

0,1(8:) < argming.g_ —logp(s;|0) — logv(6)

Qi < P(8i|0u1(8:))v(B,14(5:)) /p(si] 21)
end for

. C < log(mean({Q;}"_,))
return C'

., zN Wt p(0)

A A T ey

where p is a p-dimensional vector of non-negative baseline
intensities. Exp-MHP with known decay matrix 3 can be
characterized by the pair (u, ), and we denote this pair as
the parameters.

We focus on exp-MHP in this paper, however, the method-
ology can be utilized in other parametric settings as well;
e.g. in MHP with power-law kernels (Bacry and Muzy 2016)
and in MHP with kernels defined by a set of basis func-
tions. As mentioned above, causal discovery task is to iden-
tify the causal influence network among variables. In case
of Granger-causality in Hawkes processes, this network is
a directed graph where each node corresponds to a Hawkes
process. Any directed graph of p nodes can be expressed
by its adjacency matrix n € {0,1}P*? where n;; = 1 iff
there exists an edge from j-th node to the i-th node. For the
causal graph of a MHP we have n;; = 1 iff events in the
j-th dimension Granger-cause the events in the ¢-th dimen-
sion. Applying Theorem 1 for exp-MHP it holds 7;; = 0 iff
a;; = 0, and therefore, causal discovery in exp-MHP cor-
responds to identifying the sparsity pattern of the influence
coefficient matrix cx.

4.1 Parameter Learning in exp-MHP

Before we construct our MDL function for causal discovery,
we need to define parameters 6 and its space as well as to
know the log-likelihood function w.r.t. 8. The parameters of
the exp-MHP model are the influence coefficient matrix o
and the baseline vector p. In the ¢-th dimension it is

0; = (o) € (RG)™, 1)
and we define the parameter vector of exp-MHP as
0=1[0,,0,,....0,]" € (RP™P. (22)

Any realization of a MHP can be seen as the collection of
event sequences ¢ = {x;}’_, where each event sequence
@; = (t},th,...,t} )T denotes the times when the events
occurred in the i-th dimension. The multi-dimensional con-
ditional intensity can be computed in interval [0, T'] based on

realization  and the parameter vector 6 (Daley and Vere-



Jones 2003). Hence, the negative log-likelihood for 6 is

—logp(z|0) = Z —log p(x(6;)

=1

20

and in exp-MHP (Ozaki 1979)

(23)

i
s)ds — Z log )\Z(t;)
§=0

p
_logp(w‘ez):MiT-i‘Z 2”21 exp(— B (T—t1))]
: ]
St s X el @b
J=1 k:t] <ti

The search space for finding 6; which minimizes Eq. 24 is
the positive cone (R )P, and the objective function is con-
vex in @; (Ogata 1981). Therefore a unique solution exists
and efficient algorithms are available, e.g. (Bacry, Mastro-
matteo, and Muzy 2015).

4.2 Causal Discovery As Model Selection

Let I" be the set of all binary p X p matrices. For each
binary matrix v € I' the model M, is the set of all p-
dimensional Hawkes process models with their causal graph
having adjacency matrix <. According to the definition
of Granger-causality in exp-MHP, the restricted parameter
space ©. contains parameter vectors representing tt, o such
that a;; = 0 iff ;; = 0. The baseline vector p has no influ-
ence on causal discovery and our proposed model selection
formulation.

In this way the parameter space © is partitioned into dis-
joint subsets {© },cr as ©, and . do not intersect for
any different «v,~’ € T, because for any 8 € © the spar-
sity pattern of the influence matrix a uniquely determines
the causal graph ~. Thus finding the true model M.~ C M
is equivalent to finding the true causal graph with adjacency
matrix y*.

MDL Objective Function for exp-MHP We show that
the MDL formulation for causal discovery discussed in sub-
section 4.2 satisfies the three conditions listed in the end of
subsection 3.1. For any v € I containing w > 0 non-zero
entries, matrix o has w non-zero entries to be estimated, as
well as p dimensions of the baseline vector p has to be es-
timated. Hence, a total of p + w non-negative parameters
are to be estimated and therefore, the restricted parameter
space ©. is the positive cone (R7)P*™ which is a con-
vex set (Condition 1). Further, according to Eq. 24, nega-
tive log-likelihood is a convex function (Condition 2). Thus,
by choosing luckiness function v to be log-concave (Condi-
tion 3) we get a convex optimization problem for finding the
MDL estimator

évh = arg min — log p(x|0) — log v(0).
0

co,

For example, an appropriate uninformative choices for the
luckiness function v can be v = 1, which we used in our
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Figure 2: The relationship between the true causal graph
~(*) the true parameter 8*, and the data . The data gen-
eration mechanism (e.g., nature, right arrow) first decides
the true causal graph 4, then decides the parameter 8*
(the excitation coefficients a* and the exogenous intensities
) in the restricted parameter space -, and finally draws
a random realization (i.e., data) = from this fully specified
Hawkes process. Conversely, in the causal discovery task
(left arrow) we are given the data « and we use this hier-
archy to infer the true causal graph.
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Causal discovery by MDL inference

T

experiments. Another example of appropriate choice which
penalizes large baseline intensities and influence coefficients
can be

(25)

HeXP —1s) H exp(—ay;).

i,j=1

Efficient computation of the MDL estimator év\'r enables us
to estimate model complexity COM P(M.; v) according to
Algorithm 1, and thus we may estimate the MDL objective
L,(~; ) as in Eq. 10 for any specific causal graph v € T.

4.3 Causal Discovery Algorithm

According to MDL criterion for model selection, to find
the best model for describing the data & and equivalently
learning the underlying causal graph, we should find ’yM DL
from Eq. 11. This can by found by the exhaustive search
over I', or by heuristics based on genetic algorithms, as e.g.
in (Hlavac¢kovéa-Schindler and Plant 2020b). Figure 2 illus-
trates the connection of the mechanisms of causal discovery
by MDL and of data generation.

By imposing mild conditions on the luckiness function v and
distribution 7 of the models indexed in set I' as in Theo-
rem 2, we reduce the complexity of the above search prob-

lem for finding 'yMDL



Algorithm 2: Estimate L! (~,; x)

Input: The data , model ~, index i.

Given: Distribution 7;, luckiness v;, number of MC simula-
tions V. A

Qutput: Estimation of the MDL function L;

I: 0; < argming o — log p(x|0;) — logv;(0;)

2: C; « estimate COM P(M,;v) by Alg. 1

3: L; + —logmi(v;) — log p(x|6;) — logv;(8;) + C;
4: return ﬁi

Theorem 2. Ifin MDL-based model selection for exp-MHP,

P

[I7itvo, v(0) =]Jwi00), 6

i=1

()

then the MDL function can be rewritten as p independent
terms

p
Ly(yvi@) =Y Li(v; @), 27)
=1

such that each L: (~y,, x) can be computed by Algorithm 2.

According to Theorem 2, if the distributions over the causal
graphs and the luckiness function are independent for each
dimension of the Hawkes process, then we may optimize the
MDL function for each of the dimensions separately, which
enables us to perform parallel computation. The proof fol-
lows from the functional form of the MDL function, and it
is provided in the Appendix. Algorithm 2 computes estimate
of L¢ (;; ) based on COM P from Algorithm 1 and on in-
put values x, ~, 7;, v; and number of MC simulations.

By solving the independent optimization problems

~MDL

Fi 7% = argmin L} (v, z), (28)
v;€4{0,1}»
we get
;yMDL — [;y]l\/IDL ;yé\/[DL| o ﬁ/;\lDL]T (29)

as the solution to the optimization problem in Eq. 11.

Our causal discovery method, summarised in Algorithm 3,
executes the following steps: First, we capture p as the
number of coordinates of the data. Next, for every index
1 < ¢ < p, we search exhaustively over the model space
I'; to find 4, which minimizes our estimation of the MDL
objective function Lf (v,; x) computed by Algorithm 2. By
default, the model space I'; is the set of all p-dimensional bi-
nary vectors. We call Algorithm 3 “MDLH” for MDL-based
causal discovery in Hawkes processes.

Computational Complexity Our causal discovery
method concluded in Algorithm 3 comprises of p optimiza-
tions, each solved by 2P calls of estimating MDL function
by Algorithm 2. The latter consists of i) parameter learning
for the data @ and ii) a call of estimating model complexity
by Algorithm 1 during which we run N MC simulation
by generating N random data and learning the parameter
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Algorithm 3: Causal Discovery by MDL

Input: The data

Given: Distribution 7, luckiness v, number of MC simula-
tions IV, model spaces {I';}\_; - default: I"; = {0,1}?
Output: Inferred causal graph 4

1: p « dimension(x)

2: fori e {1,2,...,p} do

3: 4, ¢ argmin, cp, estimate Li(v,;;x) by Alg. 2

4: end for

509« Y172l - 19, //adjacency matrix
6. return

for each of them. Therefore, each call of estimating MDL
function by Algorithm 2 performs a total of [NV 41 parameter
learning procedures. The computational complexity of these
parameter learning procedures depends on the number of
parameters to be learned (for «; with w non-zero entries,
the number of parameters is w + 1) and the total number
of observed events, however, for simplicity reasons we
can assume they have the same computational complexity.
In conclusion, to search over all causal graphs, we must
perform (N + 1) - p- 2P parameter learning operations under
our causal discovery method.

Sparse Causal Graphs In scenarios when the expert
knowledge suggests a small upper-bound on the number of
causes for each variable, we may reduce the computational
complexity of our algorithm significantly. If the degree of
each of the nodes in the causal graph is bounded by a con-
stant m < p, we can achieve polynomial computational
complexity. L.e., the model space I'; for the i-th dimension
would contain only p-dimensional binary vectors with at
most m non-zero entries. Thus, we have

b p
() <)
Therefore, we would have to perform O((N + 1) - p™*1)
parameter learning procedures, which is polynomial in p for
constant m < p. We stress here however that the contribu-
tion of our work is not in computational complexity but in
the methodology and precision of causal discovery.

m

Tyl =)

k=0

(30)

o@(™).

Amortization In situations when the problem specifica-
tion (dimension p, decay matrix 3, horizon 7', model index
distribution 7, luckiness v, number of MC simulations V) is
fixed, we can amortize most of the computational cost of our
causal discovery method as follows: We compute and store
the model complexities as in Algorithm 1 for all possible in-
puts which costs N - p - 2P times of performing parameter
learning procedure in the default scenario (N - p™+! times
in sparse graphs). Next, for each query data we may run the
causal discovery method in a total of p- 2P times of perform-
ing parameter learning procedures in Line 1 of Algorithm 2
(p™*! times in sparse graphs), while we use the pre-stored
values for model complexities.

Parallelization p optimizations in Line 3 of Algorithm 3
can be performed in parallel, as they are independent. Each



optimization consists of 2P calls of Algorithm 2 in default
scenario (p™ calls in sparse graphs) which comprises N + 1
independent parameter learning procedures. Therefore, all
(N +1)-p-2Psteps (N + 1) - p™* in sparse graphs) are
independent and can be performed in parallel.

5 Related Work

We address here the related work on discovery of Granger-
causal networks in MHP and on compression schemes re-
lated to causal discovery in general. The method ADM4 in
(Zhou, Zha, and Song 2013a) performs variable selection by
using lasso and nuclear norm regularization simultaneously
on the parameters to cluster variables as well as to obtain
sparsity of the network. To detect a Granger-causal graph
in MHP, (Xu, Farajtabar, and Zha 2016) applied an EM al-
gorithm based on a penalized likelihood objective leading
to temporal and group sparsity. The method NPHC (Achab
et al. 2017) takes a non-parametric approach in learning the
norm of the kernel functions to address the causal discov-
ery problem. A moment-matching method is used fitting
the second-order and third-order integrated cumulants of the
process. NPHC is the most recent development in the liter-
ature and outperforms the state-of-the-art methods in many
aspects. These methods show good performance in scenar-
ios with “long” horizon T, however, in the opposite case of
“short” horizon, they often suffer from over-fitting.

The MDL principle was applied to bivariate causal in-
ference problem in (Marx and Vreeken 2017, 2018; Bud-
hathoki and Vreeken 2018). The considered causal inference
is however not the Granger one, as they discuss i.i.d. set-
ting in contrast to sequentially ordered data. More recently,
(Mian, Marx, and Vreeken 2021) extended these works to
causal inference into multi-dimensional case using a greedy
algorithm based on forward and backward search. The con-
ditions on the convexity of the constructed criterion func-
tions is hard to impose and the proposed greedy algorithm
does not guarantee to find a unique solution. The MDL prin-
ciple in the graphical Granger-causal models for Gaussian
time-series was applied in (Hlava¢kova-Schindler and Plant
2020a). A similar principle, connecting the idea of compres-
sion of information with Bayesian inference, called the min-
imum message length, has been applied to graphical Granger
models for Poisson time series in (Hlavackova-Schindler
and Plant 2020c) and for time series from exponential fam-
ily in (Hlavac¢kova-Schindler and Plant 2020b). To our best
knowledge, no work on causal discovery in MHP based on
MDL has been published yet.

6 Experiments and Discussion

As mentioned before, we call the instance of our general
method applied to MHP by MDLH. We evaluate its per-
formance on both synthetic data with known ground truth,
and real-world data. MDLH is implemented in python, and
the experiments are performed on a one Core Intel Xeon
machine with 16 GB RAM. Our implementation and all
experimental data are available at https://dm.cs.univie.ac.
at/research/downloads/ and https://github.com/Amirkasraj/
HawkesMDL
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6.1 Synthetic Data

Baseline Methods We consider i) NPHC (Achab et al.
2017) as a state-of-the-art method for causal discovery in
MHP since it outperformed many of previous rival methods;
ii) ADM4 (Zhou, Zha, and Song 2013b) has the same as-
sumptions as ours and does model selection by a mix of lasso
and nuclear regularization; iii) Information-theory based cri-
teria for model selection including AIC, BIC, and HQ (Chen
2016); We refer the method with the best score out of them
as IC; iv) Regularized maximum likelihood (ML) and v) reg-
ularized least-squares (LS) with lasso, ridge, and elastic net
regularizations. Implementation of all these methods is pro-
vided in Python by using Tick package (Bacry et al. 2017).
For each of the comparison methods we report its best score
among all possible regularizations and over a grid of hyper-
parameters. Each estimation method reports a matrix of ker-
nel norms and we set threshold 0.01 to determine the causal
graph from the real valued kernel norms.

Data Generation Process As in Figure 2, we gener-
ate synthetic data. In all experiments, we allow for self-
excitation in all dimensions, i.e., the diagonal entries of all
adjacency matrices are non-zero. In default scenario (low di-
mensions), each non-diagonal entry of the adjacency matrix
of the causal graph is randomly drawn from Bernoulli(r).
In sparse graphs (high dimensions), for each dimension, we
draw the number of causes (other dimensions which affect
this dimension) from unif({0,1,...,m}), and then we uni-
formly chose a candidate from all possible subsets of other
variables with that size. For p = 7 we go with default sce-
nario with = 0.3, and for p = 20 we go with sparse graphs
scenario with m = 1. Next, each entry of matrix o is drawn
from unif([0.1,0.2]) and each entry of vector p is drawn
from unif([0.5, 1.0]). In our experiments, the decay matrix
3 is the matrix of ones.

Evaluation and Results We use F1 measure to evaluate
the methods. F1 is suitable to evaluate the accuracy of es-
timated directed graphs represented by adjacency matrices,
since gives the same importance to causal and non-causal
connections. Due to the limitation of our computation re-
sources, the number of MC simulations N was 1000 in our
algorithm in all cases; We only consider luckiness function
v = 1 and uniform distribution 7. In each experimental set-
ting we randomly generate 100 data generation processes
and draw one random sample from each of them. As Ta-
ble 1 demonstrates, our method significantly outperforms
all baseline methods on short horizon. The total failure of
IC methods (an empty graph in all cases) is presumably due
their weak performance for short data.

6.2 Real-World Data

G-7 Bonds We use daily return volatility of sovereign
bonds of 7 large and developed economies called G-7 in-
cluding USA, Germany, France, Japan, UK, Canada, Italy
from 2003-2014 as in (Demirer et al. 2018). The goal is
to discover the underlying influence network among the
sovereign bonds.



Table 1: Performance of MDL and baselines in F1.

p 7 20
T 200 400 700 500 1300 2000
MDLH 774 847 893 794 828 844

ADM4 684 726 785 268 299 315
NPHC 493 588 613 273 345 40.0

ML 68.7 74.6 804 258 282 294
LS 683 744 769 264 298 313
IC NA NA NA NA NA NA

Random 300 30.0 300 75 75 7.5

PV es

Figure 3: G-7 causal graph inferred by MDLH

Shock Identification As the data is a time-series and not a
point process, to identify shocks (events in point process) in
the daily return volatility, we roll a one year window over the
data, and in each dimension if the latest value of the window
is among the top 20 percent in the rolling window we register
an event in that dimension for that day. The number of events
registered in each dimension is around 500, and applying
the knowledge gained in the synthetic experiments with a
similar scenario, we assumed this data is an instance of our
synthetic data with T = 400.

Results Only MDLH and ML were tested on the G-7 data,
since ML outperfomed other baseline methods for p = 7
in the experiments with synthetic data. MDLH discovers the
graph depicted in Figure 3. (The self-loops of all nodes were
omitted). The structure is plausible when considering the
network discovered by (Demirer et al. 2018). Also, the graph
corresponds to the expert knowledge from the domain, e.g.,
that Japanese bond neither influences nor gets influenced
by other G-7 countries. Moreover, the influence of French
bonds on the US, UK and other big economies can be af-
fected by the fact that France accused U.S of ’economic war’
in 2003 which spread in most of the world media (Alliot-
Marie 2003). On the other hand, ML discovers bi-directed
edge between US and Japan which contradicts to the expert
knowledge given in (Demirer et al. 2018). To conclude, the
MDLH gives a more plausible graph than ML.

7 Conclusion

We presented a general procedure for practical estimation of
an MDL-based objective function using Monte-Carlo inte-
gral estimation. In this procedure we constructed an MDL
objective function for inference of the Granger-causal graph
for multi-dimensional Hawkes processes. We demonstrated
significant superiority of our method in causal discovery for
short event sequences in synthetic experiments. In a real ex-

periment with G-7 bonds, our method gives a more plausible
causal graph than the baseline method.

Appendix
7.1 Proof of Theorem 2
Proof. Define

évm (z) = argmin — log p(|6;) — log v;(6;),
0,€0,,

where @, is the space of all possible values for 8;. We have

évh(w) = arg min — log p(x|0) — log v(8)
0co

~

= [01)‘71 (QZ)T, 00‘72 (SE)T, ey 0”‘71; (ZE)T]T.

Further we define

COMP(M, ;v) = log/Xp(s|[9vm(s))vi(9vm(s))ds.

We have

COMP(My:0) = 105 | p(slfuiy(5))0(,1(5)ds

=log [ [[]p(s10u,())vi(0upy, (s)ds

S

1=

~ log 1:[1 /X D(818ujs (8))01(Bupy, (5))ds

|
.Pﬁﬁ

~
Il
—

og /X D(810,1,(5)0i(Bojo, (5))ds

[
M=

COMP(M,,;v).
1

<.
Il

As in Eq. 22 in the paper, the negative log-likelihood can be
written in independent terms for each dimension. Therefore,
for each dimension 1 < ¢ < p we can write

—logvi(0y|~,(x)) + COMP(M, ;v).

Hence, we have
P p p .
S Li(via)=— Y logm(v,) = Y _logp(x|0,), (x))
i=1 i=1 i=1
p A
= logvi(By), (z))
i=1

P
+3  COMP(M,;v) (32)
=1
= —logn(v) — log p(z|0, (z))

—v(0yy(x)) + COMP(My;v)  (33)
=Ly(v; ). (34)



Thus, L as defined above satisfies Eq. 27 as required. Algo-
rithm 2 summarizes the procedure for computing L% (7y,; ).

First, we compute the MDL estimator éi for the i-th dimen-
sion by optimizing the goodness-of-fit, which is a convex
optimization problem for an appropriate choice of luckiness
function v, as discussed in subsection 4.3. Next, we esti-
mate the model complexity by using Algorithm 1. Finally,
we compute MDL objective as in Eq. 27. O

7.2 Experimental Setup

The comparison methods are estimation methods which
search for the MHP kernel functions and baseline vec-
tor based on the data. To extract a causal graph from the
achieved output, based on Theorem 1, we put a threshold
on the kernel norm to distinguish zero and non-zero kernels.
This threshold is set to 0.01.

Each of the comparison methods has a penalty and a level
of regularization given. For ML, LS, and NPHC we have
penalties: L1 (lasso), L2, elastic net, and none. For ADM4
we have lasso-nuclear penalization. We evaluated each of
the baseline methods with all possible penalties and for a set
of possible values (levels) for regularization

C € {1,2,5,10, 20,50, 100, 200, 500, 1000, 2000, 5000, ... }.

For ADM4, we also used the nuclear lasso ratio; For each of
the above settings we also considered the lasso-nuclear-ratio
taking value in {0, 0.1,05,0.9,1}.

The reported numbers for “Random” in Table 1 are the
result of a random adjacency matrix with the same number
of non-zero entries as the average test case. We report the
highest F1 score achieved by each method based on different
hyper-parameters. As we do not perform train/test validation
and instead we take the highest F1, the validated F1 scores
for baseline methods would be presumably lower.

Information criteria (AIC, BIC, and HQ) generally do not
perform well for small data and it was the case also in our ex-
periments. These methods rely on reducing model loss (i.e.,
negative log-likelihood) at the price of adding new parame-
ters to the model. The least price that these models suggest
for increasing the size of parameter set is about 1 unit of log-
likelihood, hence, these model selection methods allow for
adding any edge to the graph only if the log-likelihood could
be increased by at least 1 unit compared to the empty graph
model. This is not the case for a small data set (’short” data),
as the value of log-likelihood that we have for the naive
(empty) model and the maximum-likelihood model are both
very small (of order 0.01 or 0.1 in all of our experimental
settings). Therefore, the 1 unit improvement is not possible
and this prevents the IC methods from discovering any edge
in the causal graph.

Our method is an MDL-based model selection with no
hyper-parameters. However, we can choose the number of
MC simulations N for integral estimation, and the higher N
the better estimate. Limited by our computational resources,
we used 1000 iterations for the default case (for dimension
p = 7), and 500 iterations for the sparse graph scenario (for
dimension p = 20). As discussed in Section 4 in Subsec-
tion Amortization, we first do the MC simulations and com-
pute model complexity values, which takes about one hour
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in each experimental setting (i.e., with fixed p and 7T'), and
then we perform 100 test runs, each taking a about ten sec-
onds.

Real-world Data We observed n our synthetic experi-
ments that method ML outperformed the other baseline
methods for p = 7 and 7" = 400. Elastic net regulariza-
tion was the best regularization for ML also in our synthetic
experiments. So we ran this method on the data for the set
of levels for regularization as listed above, and in all cases
the bi-directed edge between US and Japan as an edge of
the causal graph was returned. This is not plausible since it
contradicts the expert knowledge from the domain.
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