Skip to main content

Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond

  • Protocol
  • First Online:
Golgi

Abstract

Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynch M, Field MC, Goodson HV et al (2014) Evolutionary cell biology: two origins, one objective. Proc Natl Acad Sci 111:16990–16994. https://doi.org/10.1073/pnas.1415861111

    Article  CAS  Google Scholar 

  2. Horváthová L, Žárský V, Pánek T et al (2021) Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 12:2947. https://doi.org/10.1038/s41467-021-23046-7

    Article  CAS  Google Scholar 

  3. Chan CJ, Le R, Burns K et al (2019) BioID performed on Golgi-enriched fractions identify C10orf76 as a GBF1-binding protein essential for Golgi maintenance and secretion. Mol Cell Proteomics 18:2285–2297. https://doi.org/10.1074/mcp.RA119.001645

    Article  CAS  Google Scholar 

  4. McNally KE, Faulkner R, Steinberg F et al (2017) Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 19:1214–1225. https://doi.org/10.1038/ncb3610

    Article  CAS  Google Scholar 

  5. Stairs CW, Dharamshi JE, Tamarit D et al (2020) Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci Adv 6:eabb7258. https://doi.org/10.1126/sciadv.abb7258

    Article  CAS  Google Scholar 

  6. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358. https://doi.org/10.1038/nature21031

    Article  CAS  Google Scholar 

  7. Archuleta TL, Frazier MN, Monken AE et al (2017) Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic 18:590–603. https://doi.org/10.1111/tra.12499

    Article  CAS  Google Scholar 

  8. Gershlick DC, Schindler C, Chen Y, Bonifacino JS (2016) TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27:2867–2878. https://doi.org/10.1091/mbc.e16-04-0209

    Article  CAS  Google Scholar 

  9. Kirkham M, Nixon SJ, Howes MT et al (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086. https://doi.org/10.1242/jcs.024588

    Article  CAS  Google Scholar 

  10. Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–1716. https://doi.org/10.1111/j.1600-0854.2008.00797.x

    Article  CAS  Google Scholar 

  11. Hirst J, Schlacht A, Norcott JP et al (2014) Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3:e02866. https://doi.org/10.7554/eLife.02866

    Article  CAS  Google Scholar 

  12. Hirst J, Barlow LD, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170. https://doi.org/10.1371/journal.pbio.1001170

    Article  CAS  Google Scholar 

  13. Hirst J, Edgar JR, Esteves T et al (2015) Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 24:4984–4996. https://doi.org/10.1093/hmg/ddv220

    Article  CAS  Google Scholar 

  14. Dacks JB, Field MC (2018) Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 53:70–76. https://doi.org/10.1016/j.ceb.2018.06.001

    Article  CAS  Google Scholar 

  15. More K, Klinger CM, Barlow LD, Dacks JB (2020) Evolution and natural history of membrane trafficking in eukaryotes. Curr Biol 30:R553–R564. https://doi.org/10.1016/j.cub.2020.03.068

    Article  CAS  Google Scholar 

  16. Archibald JM, Simpson AGB, Slamovits CH (2017) Handbook of the protists, 2nd edn. Springer

    Book  Google Scholar 

  17. Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583:3738–3745. https://doi.org/10.1016/j.febslet.2009.10.025

    Article  CAS  Google Scholar 

  18. Klute MJ, Melaçon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3:1–17. https://doi.org/10.1101/cshperspect.a007849

    Article  CAS  Google Scholar 

  19. Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cells. Ann N Y Acad Sci 503:17–54. https://doi.org/10.1111/j.1749-6632.1987.tb40596.x

    Article  CAS  Google Scholar 

  20. Dacks JB, Davis LAM, Sjögren AM et al (2003) Evidence for Golgi bodies in proposed “Golgi-lacking” lineages. Proc Biol Sci 270(Suppl):S168–S171. https://doi.org/10.1098/rsbl.2003.0058

    Article  Google Scholar 

  21. Marti M, Hehl AB (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 19:440–446. https://doi.org/10.1016/S1471-4922(03)00201-0

    Article  Google Scholar 

  22. Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B et al (2021) Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 84:1887–1896. https://doi.org/10.1002/jemt.23745

    Article  CAS  Google Scholar 

  23. Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146:515–527. https://doi.org/10.1007/s00418-016-1483-y

    Article  CAS  Google Scholar 

  24. Herman EK, Yiangou L, Cantoni DM et al (2018) Identification and characterisation of the cryptic Golgi apparatus in Naegleria gruberi:J Cell Sci, jcs.213306. https://doi.org/10.1242/jcs.213306

  25. Kurz S, Tiedtke A (1993) The Golgi Apparatus of Tetrahymena Thermophila. J Eukaryot Microbiol 40:10–13. https://doi.org/10.1111/j.1550-7408.1993.tb04874.x

    Article  CAS  Google Scholar 

  26. Brugerolle G, Viscogliosi E (1994) Organization and composition of the striated roots supporting the Golgi apparatus, the so-called parabasal apparatus, in parabasalid flagellates. Biol Cell 81:277–285. https://doi.org/10.1016/0248-4900(94)90010-8

    Article  Google Scholar 

  27. Barlow LD, Nývltová E, Aguilar M et al (2018) A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol 16. https://doi.org/10.1186/s12915-018-0492-9

  28. Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38(12):5825–5829

    Article  CAS  Google Scholar 

  29. Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085

    Article  CAS  Google Scholar 

  30. Blum M, Chang H-Y, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article  CAS  Google Scholar 

  31. Li L (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503

    Article  CAS  Google Scholar 

  32. Cosentino S, Iwasaki W (2019) SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 35:149–151. https://doi.org/10.1093/bioinformatics/bty631

    Article  CAS  Google Scholar 

  33. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y

    Article  Google Scholar 

  34. Burgos PV, Mardones GA, Rojas AL et al (2010) Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18:425–436. https://doi.org/10.1016/j.devcel.2010.01.015

    Article  CAS  Google Scholar 

  35. Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802. https://doi.org/10.1091/mbc.10.8.2787

    Article  CAS  Google Scholar 

  36. Davies AK, Itzhak DN, Edgar JR et al (2018) AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 9:3958. https://doi.org/10.1038/s41467-018-06172-7

    Article  CAS  Google Scholar 

  37. Barlow LD, Dacks JB, Wideman JG (2014) From all to (nearly) none: tracing adaptin evolution in Fungi. Cell Logist 4:e28114. https://doi.org/10.4161/cl.28114

    Article  Google Scholar 

  38. Field MC, Gabernet-Castello C, Dacks JB (2007) Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv Exp Med Biol 607:84–96. https://doi.org/10.1007/978-0-387-74021-8_7

    Article  Google Scholar 

  39. Wilson G (2016) Software carpentry: lessons learned. F1000Research 3(62):10.12688/f1000research.3-62.v2

    Google Scholar 

  40. Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042. https://doi.org/10.1111/eva.12178

    Article  Google Scholar 

  41. Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342. https://doi.org/10.1038/nrg3174

    Article  CAS  Google Scholar 

  42. Pearson WR (2013) An Introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 1:1286–1292. https://doi.org/10.1002/0471250953.bi0301s42.An

    Article  Google Scholar 

  43. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  44. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755

    Article  CAS  Google Scholar 

  45. Altenhoff AM, Dessimoz C (2012) Inferring orthology and paralogy. In: Anisimova M (ed) Evolutionary genomics. Humana Press, Totowa, NJ, pp 259–279

    Chapter  Google Scholar 

  46. Gabaldón T (2008) Large-scale assignment of orthology: back to phylogenetics? Genome Biol 9:235. https://doi.org/10.1186/gb-2008-9-10-235

    Article  CAS  Google Scholar 

  47. Hooff JJE, Tromer E, Dam TJP et al (2019) Inferring the evolutionary history of your favorite protein: a guide for molecular biologists. BioEssays 41:1900006. https://doi.org/10.1002/bies.201900006

    Article  Google Scholar 

  48. Barlow LD (2022) AMOEBAE v3.0. Zenodo. https://doi.org/10.5281/zenodo.5825385

  49. Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci 95:6239–6244. https://doi.org/10.1073/pnas.95.11.6239

    Article  CAS  Google Scholar 

  50. Deutekom ES, Vosseberg J, van Dam TJP, Snel B (2019) Measuring the impact of gene prediction on gene loss estimates in Eukaryotes by quantifying falsely inferred absences. PLOS Comput Biol 15:e1007301. https://doi.org/10.1371/journal.pcbi.1007301

    Article  CAS  Google Scholar 

  51. Larson RT, Dacks JB, Barlow LD (2019) Recent gene duplications dominate evolutionary dynamics of adaptor protein complex subunits in embryophytes. Traffic 20:961–973. https://doi.org/10.1111/tra.12698

    Article  CAS  Google Scholar 

  52. Molder F, Jablonski KP, Letcher B et al (2021) Sustainable data analysis with Snakemake. F1000Res 10:33

    Article  Google Scholar 

  53. Field HI, Coulson RM, Field MC (2013) An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics 14:141. https://doi.org/10.1186/1471-2105-14-141

    Article  Google Scholar 

  54. Steinegger M, Meier M, Mirdita M et al (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20:473. https://doi.org/10.1186/s12859-019-3019-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Igor Sinelnikov, Information Services and Technology University of Alberta for his technical expertise in setting up and maintaining the computational cluster on which the Dacks lab AMOEBAE version is housed and on which the beta testing of this version was performed. His technical support over the years for the Dacks Lab computational resources has been invaluable.

AMOEBAE was initially developed at the Dacks Laboratory at the University of Alberta, and was supported by National Sciences and Engineering Council of Canada (NSERC) Discovery grants RES0021028, RES0043758, and RES0046091 awarded to Joel B. Dacks, as well as an NSERC Postgraduate Scholarship-Doctoral awarded to Lael D. Barlow. Kara Terry was supported by an Alberta Innovates Health Solutions Summer Research Studentship. Will Maciejowski was supported by an Office of the Provost and VP (Academic) Summer Studentship Award. Kiran More was supported by an NSERC Alexander Graham Bell Canada Graduate Scholarship - Master’s and a Walter H. Johns Graduate Fellowship.

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG).

The authors gratefully acknowledge helpful discussion with many additional past members of the Dacks laboratory, as well as numerous colleagues around the globe particularly in the fields of protistology and evolutionary cell biology.

Author Contributions

LDB conceived of and wrote the AMOEBAE workflow. JBD conceived of the manuscript and directed the collaboration. LDB, WM, KM, KT, RV, and KZ tested the workflow on example datasets as well as other datasets (data not shown) and provided feedback for iterative improvement or identification of problematic dataset types. LDB and JBD drafted the manuscript, and all authors contributed to editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lael D. Barlow or Joel B. Dacks .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary file 1

Detailed summary of similarity search results output by AMOEBAE (CSV 1849 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barlow, L.D. et al. (2023). Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics