Skip to main content
Log in

Large and Moderate Deviations Principles and Central Limit Theorem for the Stochastic 3D Primitive Equations with Gradient-Dependent Noise

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We establish the large deviations principle (LDP), the moderate deviations principle (MDP), and an almost sure version of the central limit theorem (CLT) for the stochastic 3D viscous primitive equations driven by multiplicative white noise allowing dependence on the spatial gradient of velocity with initial data in \(H^2\). We establish the LDP using the weak convergence approach by Budjihara and Dupuis and a uniform version of the stochastic Gronwall lemma. The result corrects a minor technical issue in Dong et al. (J Differ Equ 263(5):3110–3146, 2017) and establishes the result for a more general noise. The MDP is established by a similar argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the original system and the reformulation procedure, see, e.g. [40, Section 2.1].

  2. Usually, the primitive equations of ocean also contain salinity. However, since it does not introduce any additional mathematical difficulties, it is omitted here.

References

  1. Bensoussan, A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38(3), 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brzeźniak, Z., Slavík, J.: Well-posedness of the 3D stochastic primitive equations with transport noise. J. Differ. Equ. (2021). https://doi.org/10.1016/j.jde.2021.05.049

  3. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20(1, Acta Univ. Wratislav. No. 2246), 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36(4), 1390–1420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, C., Li, J., Titi, E.S.: Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch. Ration. Mech. Anal. 214(1), 35–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2) 166(1), 245–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61(3), 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: In: Stochastic Equations in Infinite Dimensions, Volume 152 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

  9. Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240(14–15), 1123–1144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Debussche, A., Glatt-Holtz, N., Temam, R., Ziane, M.: Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity 25(7), 2093–2118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential, Volume 29 of North-Holland Mathematics Studies. North-Holland, Amsterdam, New York (1978)

    Google Scholar 

  12. Dong, Z., Zhai, J., Zhang, R.: Large deviation principles for 3D stochastic primitive equations. J. Differ. Equ. 263(5), 3110–3146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freidlin, M.I., Wentzell, A.D.: In: Random Perturbations of Dynamical Systems, Volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1984)

  14. Fristedt, B., Gray, L.: A Modern Approach to Probability Theory, Probability and its Applications. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  15. Gao, H., Sun, C.: Well-posedness and large deviations for the stochastic primitive equations in two space dimensions. Commun. Math. Sci. 10(2), 575–593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glatt-Holtz, N., Kukavica, I., Vicol, V., Ziane, M.: Existence and regularity of invariant measures for the three dimensional stochastic primitive equations. J. Math. Phys. 55(5):051504, 34 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Glatt-Holtz, N., Temam, R., Wang, C.: Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications. Chin. Ann. Math. Ser. B 38(2), 425–472 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glatt-Holtz, N., Ziane, M.: Strong pathwise solutions of the stochastic Navier–Stokes system. Adv. Differ. Equ. 14(5–6), 567–600 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. Integral Equ. 14(11), 1381–1408 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Guo, B., Huang, D.: On the 3D viscous primitive equations of the large-scale atmosphere. Acta Math. Sci. Ser. B (Engl. Ed.) 29(4), 846–866 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hieber, M., Kashiwabara, T.: Global strong well-posedness of the three dimensional primitive equations in \(L^p\)-spaces. Arch. Ration. Mech. Anal. 221(3), 1077–1115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, C., Temam, R., Ziane, M.: The primitive equations on the large scale ocean under the small depth hypothesis. Discrete Contin. Dyn. Syst. 9(1), 97–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hussein, A., Saal, M., Wrona, M.: Primitive equations with horizontal viscosity: the initial value and the time-periodic problem for physical boundary conditions. AIMS. (2021). https://doi.org/10.3934/dcds.2020398

  24. Ju, N.: The global attractor for the solutions to the 3D viscous primitive equations. Discrete Contin. Dyn. Syst. 17(1), 159–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ju, N.: Global uniform boundedness of solutions to viscous 3D primitive equations with physical boundary conditions. Indiana Univ. Math. J. (2020). https://doi.org/10.1512/iumj.2020.69.7976

  26. Ju, N.: On \(H^2\) solutions and \(z\)-weak solutions of the 3D primitive equations. Indiana Univ. Math. J. 66(3), 973–996 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  28. Kobelkov, G.M.: Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9(4), 588–610 (2007)

  29. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739–2753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J., Titi, E.S.: Recent advances concerning certain class of geophysical flows. In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 933–971. Springer, Cham (2018)

  31. Li, J., Titi, E.S.: The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation. J. Math. Pures Appl. 124, 30–58 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, J.-L., Temam, R., Wang, S.: Models for the coupled atmosphere and ocean. (CAO I, II). Comput. Mech. Adv. 1(1), 120 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Lions, J.-L., Temam, R., Wang, S.H.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, J.-L., Temam, R., Wang, S.H.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61(1), 27–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, W., Röckner, M., Zhu, X.-C.: Large deviation principles for the stochastic quasi-geostrophic equations. Stoch. Process. Appl. 123(8), 3299–3327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mikulevicius, R., Rozovskii, B.: Stochastic Navier–Stokes equations. Propagation of chaos and statistical moments. In: Optimal Control and Partial Differential Equations, pp. 258–267. IOS, Amsterdam (2001)

  38. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pedlosky, J.: Geophysical Fluid Dynamics, Springer Study Edition. Springer, New York (1992)

    Google Scholar 

  40. Petcu, M., Temam, R. M., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Handbook of Numerical Analysis. Vol. XIV. Special Volume: Computational Methods for the Atmosphere and the Oceans, Volume 14 of Handb. Numer. Anal., pp. 577–750. Elsevier/North-Holland, Amsterdam (2009)

  41. Qiao, H.: A theorem dual to Yamada-Watanabe theorem for stochastic evolution equations. Stoch. Dyn. 10(3), 367–374 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Röckner, M., Schmuland, B., Zhang, X.: Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matt. Phys. (2008)

  43. Samelson, R., Temam, R., Wang, S.: Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl. Anal. 70(1–2), 147–173 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Temam, R.: Navier–Stokes Equations, Volume 2 of Studies in Mathematics and its Applications, Revised Edition. North-Holland, Amsterdam, New York (1979). Theory and numerical analysis, With an appendix by F. Thomasset

  45. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  46. van der Vaart, A.W.: Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  47. Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math. 19, 261–286 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, R., Zhai, J., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier–Stokes equations. J. Differ. Equ. 258(10), 3363–3390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, R., Zhou, G., Guo, B.: Stochastic 2D primitive equations: central limit theorem and moderate deviation principle. Comput. Math. Appl. 77(4), 928–946 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Prof. Z. Brzeźniak and P. Razafimandimby for fruitful discussions, the University of York for their kind hospitality and the anonymous referee for a careful reading of the manuscript and suggestions improving the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Slavík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Uniform Version of the Stochastic Gronwall Lemma

Uniform Version of the Stochastic Gronwall Lemma

The following result is not new; in fact, it is a combination of the stochastic Gronwall lemma from Glatt-Holtz and Ziane [18, Lemma 5.3] and a part of the proof of global existence of the strong solutions of 2D stochastic Navier–Stokes equation from Glatt-Holtz and Ziane [18, Theorem 4.2]. We include the proof for the sake of completeness.

Proposition A.1

Let \(\varepsilon _0 > 0\). Let \(X^\varepsilon , Y^\varepsilon , Z^\varepsilon , R^\varepsilon : [0, \infty ) \times \Omega \rightarrow [0, \infty )\) be stochastic processes on a probability space \((\Omega , \mathcal {F}, \mathbb {P})\). Let \(\tau _K^{R, \varepsilon }\) be the stopping time defined by

$$\begin{aligned} \tau _K^{R, \varepsilon } = \inf \left\{ t \ge 0 \mid \int _0^t R^\varepsilon \, \mathrm{d}s \ge K \right\} , \quad K > 0, \varepsilon \in (0, \varepsilon _0]. \end{aligned}$$

Let for all \(t > 0\)

$$\begin{aligned} \lim _{K \rightarrow \infty } \mathbb {P}\left( \left\{ \tau _K^{R, \varepsilon } \le t \right\} \right) = 0 \, \mathrm{uniformly\, w.r.t.\, } \varepsilon \in (0, \varepsilon _0]. \end{aligned}$$
(A.1)

Let \(T > 0\) and let for all \(K > 0\) and \(\varepsilon \in (0, \varepsilon _0]\)

$$\begin{aligned} \mathbb {E}\int _0^{T \wedge \tau _K^{R, \varepsilon }} R^\varepsilon X^\varepsilon + Z^\varepsilon \, \mathrm{d}s \le C_{T, K} < \infty . \end{aligned}$$

Let there exist a constant \(C_0 = C_0(T)\) such that, for all \(\varepsilon \in (0, \varepsilon _0]\) and all stopping times \(\tau _a\) and \(\tau _b\) satisfying \(0 \le \tau _a \le \tau _b \le T \wedge \tau _K^{R, \varepsilon }\), one has

$$\begin{aligned} \mathbb {E}\left[ \sup _{s \in [\tau _a, \tau _b]} X^\varepsilon + \int _{\tau _a}^{\tau _b} Y^\varepsilon \, \mathrm{d}s \right] \le C_0 \left[ X(\tau _a) + \int _{\tau _a}^{\tau _b} R^\varepsilon X^\varepsilon + Z^\varepsilon \, \mathrm{d}s \right] . \end{aligned}$$

Then, for all \(\varepsilon \in (0, \varepsilon _0]\) and \(K > 0\), we have

$$\begin{aligned} \mathbb {E}\left[ \sup _{s \in \left[ 0, T \wedge \tau _K^{R, \varepsilon }\right] } X^\varepsilon + \int _0^{T \wedge \tau _K^{R, \varepsilon }} Y^\varepsilon \, \mathrm{d}s \right] \le C_{C_0, T, K} \mathbb {E}\left[ X(0) + \int _0^{T \wedge \tau _K^{R, \varepsilon }} Z^{\varepsilon } \, \mathrm{d}s \right] .\nonumber \\ \end{aligned}$$
(A.2)

Moreover, if we define the stopping time \(\tau _K^{X, \varepsilon }\) by

$$\begin{aligned} \tau _K^{X, \varepsilon } = \inf \left\{ t \ge 0 \mid \sup _{s \in [0, t]} X^\varepsilon + \int _0^t Y^\varepsilon \, \mathrm{d}s \ge K \right\} , \quad K > 0, \varepsilon \in (0, \varepsilon _0], \end{aligned}$$

then for all \(t > 0\)

$$\begin{aligned} \lim _{K \rightarrow \infty } \mathbb {P}\left( \left\{ \tau _K^{X, \varepsilon } \le t \right\} \right) = 0 \, \mathrm{uniformly\, w.r.t.\, } \varepsilon \in (0, \varepsilon _0], \end{aligned}$$
(A.3)

and \(\tau _K^{X, \varepsilon } \rightarrow +\infty \) as \(K \rightarrow \infty \) \(\mathbb {P}\)-a.s. for all \(\varepsilon \in (0, \varepsilon _0]\).

Proof

The inequality (A.2) is the stochastic Gronwall lemma from Glatt-Holtz and Ziane [18, Lemma 5.3]. Following the argument from Glatt-Holtz and Ziane [18, Theorem 4.2], we use the Chebyshev theorem and (A.2) to estimate

$$\begin{aligned} \mathbb {P}\left( \left\{ \tau _K^{X, \varepsilon } \le t \right\} \right)&\le \mathbb {P}\left( \left\{ \tau _K^{X, \varepsilon } \le t \right\} \cap \left\{ \tau _M^{R, \varepsilon } > t \right\} \right) + \mathbb {P}\left( \left\{ \tau _M^{R, \varepsilon } \le t \right\} \right) \\&\le \mathbb {P}\left( \left\{ \sup _{s \in \left[ 0, t \wedge \tau _M^{R, \varepsilon } \right] } X^\varepsilon + \int _0^{t \wedge \tau _M^{R, \varepsilon }} Y^\varepsilon \, \mathrm{d}s \ge K \right\} \right) + \mathbb {P}\left( \left\{ \tau _M^{R, \varepsilon } \le t \right\} \right) \\&\le \frac{1}{K} \mathbb {E}\left[ \sup _{s \in \left[ 0, t \wedge \tau _M^{R, \varepsilon } \right] } X^\varepsilon + \int _0^{t \wedge \tau _M^{R, \varepsilon }} Y^\varepsilon \, \mathrm{d}s \right] + \mathbb {P}\left( \left\{ \tau _M^{R, \varepsilon } \le t \right\} \right) \\&\le \frac{C_{t, M}}{K} + \mathbb {P}\left( \left\{ \tau _M^{R, \varepsilon } \le t \right\} \right) . \end{aligned}$$

Let \(\delta > 0\) be arbitrary. By the uniform convergence (A.1), we find \(M \in \mathbb {N}\) such that, for all \(\varepsilon \in (0, \varepsilon _0]\), we have

$$\begin{aligned} \mathbb {P}\left( \left\{ \tau _M^{R, \varepsilon } \le t \right\} \right) < \frac{\delta }{2}. \end{aligned}$$

Let \(K_0 \in \mathbb {N}\) be such that \(C_{t, M}/K < \delta /2\) for all \(K \in \mathbb {N}\), \(K \ge K_0\). Collecting the above, we deduce that

$$\begin{aligned} \mathbb {P}\left( \left\{ \tau _K^{X, \varepsilon } \le t \right\} \right) < \delta , \end{aligned}$$

for all \(\varepsilon \in (0, \varepsilon _0]\) and all \(K \in \mathbb {N}\), \(K \ge 0\), which finishes the proof of (A.3).

To establish the \(\mathbb {P}\)-a.s. convergence, we argue by contradiction. Assume that \(\mathbb {P}(\lbrace \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } < +\infty \rbrace ) > 0\) for some \(\varepsilon \in (0, \varepsilon _0]\). Then, since \(\lbrace \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } < +\infty \rbrace = \bigcup _{N \in \mathbb {N}} \lbrace \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } \le N \rbrace \), there exists \(N_0 \in \mathbb {N}\) such that \(\mathbb {P}(\lbrace \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } \le N_0 \rbrace ) > 0\). On the other hand, since \(\tau _K^{X, \varepsilon }\) is monotone, i.e. \(\lbrace \tau _K^{X, \varepsilon } \le N_0 \rbrace \supseteq \lbrace \tau _L^{X, \varepsilon } \le N_0 \rbrace \) for \(K \le L\), we observe \(\lbrace \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } \le N_0 \rbrace = \bigcap _{K \in \mathbb {N}} \lbrace \tau _K^{X, \varepsilon } \le N_0 \rbrace \). However, (A.3) implies

$$\begin{aligned} 0 < \mathbb {P}\left( \left\{ \lim _{K \rightarrow \infty } \tau _K^{X, \varepsilon } \le N_0 \right\} \right) = \mathbb {P}\left( \bigcap _{K \in \mathbb {N}} \left\{ \tau _K^{X, \varepsilon } \le N_0 \right\} \right) = \lim _{K \rightarrow \infty } \mathbb {P}\left( \left\{ \tau _K^{X, \varepsilon } \le N_0 \right\} \right) = 0, \end{aligned}$$

a contradiction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavík, J. Large and Moderate Deviations Principles and Central Limit Theorem for the Stochastic 3D Primitive Equations with Gradient-Dependent Noise. J Theor Probab 35, 1736–1781 (2022). https://doi.org/10.1007/s10959-021-01125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01125-1

Keywords

Mathematics Subject Classification (2020)

Navigation