Skip to main content
Log in

Crack Occurrence in Bodies with Gradient Polyconvex Energies

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In a set of infinitely many reference configurations differing from a chosen fit region \({\mathscr {B}}\) in the three-dimensional space and from each other only by possible crack paths, a set parameterized by special measures, namely curvature varifolds, energy minimality selects among possible configurations of a continuous body those that are compatible with assigned boundary conditions of Dirichlet-type. The use of varifolds allows us to consider both “material phase" (cracked or non-cracked) and crack orientation. The energy considered is gradient polyconvex: it accounts for relative variations of second-neighbor surfaces and pressure-confinement effects. We prove existence of minimizers for such an energy. They are pairs of deformations and curvature varifolds. The former ones are taken to be SBV maps satisfying an impenetrability condition. Their jump set is constrained to be in the varifold support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By Lusin’s theorem, measurable functions f into topological spaces with a countable basis can be approximated by continuous functions on arbitrarily large portions of their domain. Also, if \(f:\Omega \rightarrow {{\mathbb {R}}}^N\) is locally summable in Lebesgue’s sense, by the Lebesgue differentiation theorem almost every x in \(\Omega \) is a Lebesgue point of f, i.e., a point such that for some \(\lambda \in {{\mathbb {R}}}^N\)

    $$\begin{aligned} \lim _{r\rightarrow 0^+}\frac{1}{|B(x,r)|}\int _{B(x,r)}|f(z)-\lambda |\;\mathrm {d}x=0 \end{aligned}$$

    with B(xr) a ball of radius r, centered at x, which Lebesgue measure is |B(xr)|. The number \(\lambda =f(x)\) is called Lebesgue value of f at x.

References

  • Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Allard, W.K.: On the first variation of a varifold: boundary behavior. Ann. Math. 101, 418–446 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Almgren F. J. Jr. (1965), Theory of varifolds, mimeographed notes, Princeton (1965)

  • Ambrosio, L.: A new proof of the \(SBV\) compactness theorem. Calc. Var. Par. Diff. Equ. 3, 127–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., Braides, A., Garroni, A.: Special functions with bounded Variation and with weakly differentiable traces on the jump set. NoDEA Nonlin. Diff. Equ. Appl. 5, 219–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  • Balint, D.S., Deshpande, V.S., Needleman, A., van der Giessen, E.: Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 54, 2281–2303 (2006)

    Article  MATH  Google Scholar 

  • Bassani, J.L., Needleman, A., van der Giessen, E.: Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int. J. Solids Struct. 38, 833–853 (2001)

    Article  MATH  Google Scholar 

  • Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Math. Mod. Methods Appl. Sci. 28, 2367–2401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Bisconti, L., Mariano, P.M., Markenscoff, X.: A model of isotropic damage with strain-gradient effects: existence and uniqueness of weak solutions for progressive damage processes. Math. Mech. Solids 24, 2726–2741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Capriz, G.: Continua with latent microstructure. Arch. Rational Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P.G., Nečas, J.: Unilateral problems in nonlinear three-dimensional elasticity. Arch. Rat. Mech. Anal. 97, 171–188 (1987)

    Article  MATH  Google Scholar 

  • Coleman, B.D., Hodgdon, M.: On shear bands in ductile materials. Arch. Rat. Mech. Anal. 90, 219–247 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: Existence and approximation results. Arch. Rational Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • De Giorgi, E.: New problems on minimizing movements, in Ennio De Giorgi - Selected Papers, L. Ambrosio, G Dal Maso, M. Forti, M. Miranda, S. Spagnolo Edt.s, pp. 699-713, Springer Verlag, 2006 (1993)

  • Duda, F.P., Šilhavý, M.: Dislocation walls in crystals under single slip. Comp. Meth. Appl. Mech. Eng. 193, 5385–5409 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunn, J.E., Serrin, J.: On the thermomechanics of intertistitial working. Arch. Rational Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Federer, H., Fleming, W.H.: Normal and integral currents. Ann. of Math. 72, 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Feuerbacher, M., Heggen, M.: Metadislocations in complex metallic alloys and their relation to dislocations in icosahedral quasicrystals, Israel. J. Chem. 51, 1235–1245 (2011)

    Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Google Scholar 

  • Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Giaquinta, M., Mariano, P.M., Modica, G.: A variational problem in the mechanics of complex materials. Disc. Cont. Dyn. Syst. A 28, 519–537 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Giaquinta, M., Mariano, P.M., Modica, G., Mucci, D.: Ground states of simple bodies that may undergo brittle fracture. Physica D - Nonlin. Phenomena 239, 1485–1502 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Giaquinta, M., Modica, G., Souček, J.: Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 106, 97-159. Erratum and addendum, Arch. Rational Mech. Anal., (1990) 109, 385-392 (1989)

  • Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations, voll. Springer-Verlag, Berlin, I and II (1998)

  • Griffith, A.A.: The phenomena of rupture and flow in solids, pp. 163–198. Phil. Trans. Royal Soc. A, CCXXI (1920)

  • Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E.: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008)

    Article  MATH  Google Scholar 

  • Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Korteweg, D.J.: Sur la Forme que Prennent les Équations du Mouvements des Fluides si l’on Tient Compte des Forces Capillaires causées par des Variations de Densité Considérables mais Continues et sur la Théorie de la Capillarité dans l’Hipothèse d’une Variation Continue de la Densité. Arch. Néerl. Sci. Exactes Nat. Ser. II 6, 1–24 (1901)

  • Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Kružík, M., Pelech, P., Schlömerkemper, A.: Gradient polyconvexity in evolutionary models of shape-memory alloys. J. Opt. Theory Appl. 184, 5–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Kružík, M., Roubíček, T.: Mathematical methods in continuum mechanics of solids. Springer, Switzerland (2019)

    Book  MATH  Google Scholar 

  • Lee, E.H.: Elastic-plastic deformations at finite strains. J. Appl. Mech. 3, 1–6 (1969)

    Article  MATH  Google Scholar 

  • Lubensky, T.C., Ramaswamy, S., Toner, J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444–7452 (1985)

    Article  Google Scholar 

  • Mantegazza, C.: Curvature varifolds with boundary. J. Diff. Geom. 43, 807–843 (1996)

    MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: On the axioms of plasticity. Int. J. Solids Struct. 35, 1313–1324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: Mechanics of quasi-periodic alloys. J. Nonlin. Sci. 16, 45–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: Geometry and balance of hyper-stresses. Rendiconti Lincei, Matematica e Applicazioni 18, 311–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: Physical significance of the curvature varifold-based description of crack nucleation. Rendiconti Lincei 21, 215–233 (2010)

    MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: Second-neighbor interactions in classical field theories: invariance of the relative power and covariance. Math. Meth. Appl. Sci. 40, 1316–1332 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariano, P.M.: Mechanics of dislocations and metadislocations in quasicrystals and their approximants: power invariance and balance. Cont. Mech. Thermodyn. 31, 373–399 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariano, P.M., Galano, L.: Fundamentals of the mechanics of solids. Birkhäuser, Boston (2015)

    Book  MATH  Google Scholar 

  • Miehe, C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35, 3859–3897 (1998)

    Article  MATH  Google Scholar 

  • Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on \(SL\left( d\right) \). In: Newton, P.K., Weinstein, A., Holmes, P.J. (eds.) Geometry, dynamics and mechanics, pp. 61–90. Springer-Verlag, New York (2002)

    Chapter  MATH  Google Scholar 

  • Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Parry, G.P.: Generalized elastic-plastic decomposition in defective crystals. In: Capriz, P.M., Mariano, Ed. (eds.) in Advances in multifield theories for continua with substructure, G, pp. 33–50. Birkh äuser, Boston (2004)

    Chapter  Google Scholar 

  • Phillips, R.: Crystals. Defects and Microstructures. Cambridge University Press (2001)

  • Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^{e}F^{p}\). J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Reina, C., Schlömerkemper, A., Conti, S.: Derivation of F=FeFp as the continuum limit of crystalline slip. J. Mech. Phys. Solids 89, 231–254 (2016)

    Article  MathSciNet  Google Scholar 

  • Segev, R.: Geometric analysis of hyper-stresses. Int. J. Eng. Sci. 120, 100–118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., Hughes, T.R.J.: Computational inelasticity. Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  • Vardoulakis, I., Aifantis, E.C.: A gradient flow theory of plasticity for granular materials. Acta Mech. 87, 197–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Yefimov, S., van der Giessen, E.: Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int. J. Solids Struct. 42, 3375–3394 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been developed within the activities of the research group in “Theoretical Mechanics” of the “Centro di Ricerca Matematica Ennio De Giorgi” of the Scuola Normale Superiore in Pisa. PMM wishes to thank the Czech Academy of Sciences for hosting him in Prague during February 2020 as a visiting professor. We acknowledge also the support of GAČR-FWF project 19-29646L (to MK), GNFM-INDAM (to PMM), and GNAMPA-INDAM (to DM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maria Mariano.

Additional information

Communicated by Arash Yavari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kružík, M., Mariano, P.M. & Mucci, D. Crack Occurrence in Bodies with Gradient Polyconvex Energies. J Nonlinear Sci 32, 16 (2022). https://doi.org/10.1007/s00332-021-09769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09769-3

Keywords

Navigation