Skip to main content
Log in

Comparative Evaluation of CO2 Fixation of Microalgae Strains at Various CO2 Aeration Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study investigated microalgal CO2 fixation at the CO2 concentration ranging from 5 to 40% and the CO2 loading rate of 14.4 to 57.6 L/L-d. Chlorella sp. (AG10133) was selected as the optimal strain for CO2 fixation among examined algal strains. The microalgal CO2 fixation was highly dependent on the CO2 loading rate as well as CO2 concentration. In batch culture, the highest CO2 fixation rate of 1.785 g/L-d was obtained at the CO2 concentration and the CO2 loading rate of 15% and 43.2 L/L-d, respectively. The high CO2 fixation performance was maintained at CO2 40% with the same CO2 loading rate. On the other hand, CO2 loading rate over 43.2 L/L-d at CO2 15% deteriorated CO2 fixation along with the decrease of microalgal growth. In continuous culture, the CO2 fixation rate of 2.25 g/L-d was achieved at the pseudo-steady state. The microalgal CO2 fixation would be suitable for high-strength CO2 gas stream such as biogas by providing proper CO2 loading rate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

E-supplementary data of this work can be found in the online version of the paper.

References

  1. Jang, K.Y.: Forecast of Domestic and Overseas Energy Market Outlook. POSCO Institute of Management, Busan (2017)

    Google Scholar 

  2. Renewable Energy 3020 Implementation Plan (proposal). Ministry of Trade, Industry and Energy. (2017). Accessed December 2017

  3. Kerstin, H., Christian, H., Mattias, S., Josefin, J.: Biogas upgrading—technical review. Energiforsk 275 (2016).

  4. Danish Technological Institute: Overview of Biogas Technologies for Production of Liquid Transport Fuels. Danish Technological Institute, Taastrup (2012)

    Google Scholar 

  5. Fredric, B., Tobias, P., Christian, H., Daniel, T.: Biogas upgrading—technology overview, comparison and perspectives for the future. Biofpr. 7(5), 499–511 (2013)

    Google Scholar 

  6. Kim, Y.S., Yoon, Y.M., Kim, C.H., Giersdorf, J.: Status of biogas technologies and policies in South Korea. Renew. Sustain. Energy Rev. 16, 3430–3438 (2012)

    Article  Google Scholar 

  7. Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R.: Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49, 3228–3236 (2015)

    Article  Google Scholar 

  8. Bae, J.H., Yu, M.S., Ryu, D.S., Lee, J.K., Kim, C.K.: Waste Recycling: Biogas Production and Utilization. Dongwha Technology, Dongwha (2010)

    Google Scholar 

  9. Kim, Y.H., Kim, K.N., Ko, S.C.: Present and future of marine bioenergy, pp. 63–70. Korea Maritime University, Busan (2011)

    Google Scholar 

  10. Awe, O.W., Zhao, Y., Nzihou, A., Minh, D.P., Lyczko, N.: A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor. 8, 267–283 (2017)

    Article  Google Scholar 

  11. de Morais, M.G., Costa, J.: Biofixation of carbon dioxide by Spirulina Sp. and Scenedesmus Obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol. 129(3), 439–445 (2007)

    Article  Google Scholar 

  12. Yoon. Y.S.: 1996. Simultaneous removal of carbon dioxide from waste flue gas and nitrogen compounds from wastewater by algal cultivation. Master’s thesis, Pohang University

  13. Kroumov, A.D., Módenes, A.N., Trigueros, D.E.G., Espinoza-Quiñones, F.R., Borba, C.E., Scheufele, F.B., Hinterholz, C.L.: A systems approach for CO2 fixation from flue gas by microalgae—theory review. Process Biochem. 51(11), 1817–1832 (2016)

    Article  Google Scholar 

  14. Raven, J.A., Cockell, C.S., De La Rocha, C.L.: The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363(1504), 2641–2650 (2008)

    Article  Google Scholar 

  15. Kim, T.: Industrial utility of microalgae, Tech news brief. Korea Institute of Science and Technology Information, Daejeon (2004)

    Google Scholar 

  16. Wang, B., Li, Y., Wu, N.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008)

    Article  Google Scholar 

  17. Ono, E., Cuello, J.L.: Selection of optimal microalgae species for CO2 sequestration. In: Proceedings of Second Annual Conference on Carbon Sequestration Alexandria. VA, Citeseer. (2003)

  18. Judd, S.J., Momani, F.A.O.A., Znad, H., Ketife, A.M.D.A.: The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew. Sustain. Energy Rev. 71, 379–387 (2017)

    Article  Google Scholar 

  19. de Souza, M.P., Hoeltz, M., Gressler, P.D., Benitez, L.B., Schneider, R.C.S.: Potential of microalgal bioproducts: general perspectives and main challenges. Waste Biomass Valor. 10, 2139–2156 (2019)

    Article  Google Scholar 

  20. Apandi, N., Mohamed, R.M.S.R., Al-Gheethi, A., Gani, P., Ibrahim, A., Kassim, A.H.M.: Scenedesmus biomass productivity and nutrient removal from wet market wastewater, a bio-kinetic Study. Waste Biomass Valor. 10, 2783–2800 (2019)

    Article  Google Scholar 

  21. Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S.: Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol. Adv. 29(2), 189–198 (2011)

    Article  Google Scholar 

  22. Huy, M., Kumar, G., Kim, S.H.: Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery. Bioresour. Technol. 247, 576–581 (2018)

    Article  Google Scholar 

  23. Rodolfi, L., Chini, Z.G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009)

    Article  Google Scholar 

  24. Almomani, F.A., Örmeci, B.: Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method. Environ. Monit. Assess. 190(2), 90 (2018)

    Article  Google Scholar 

  25. Cossio, M.L.T., Giesen, L.F., Araya, G., Pérez-Cotapos, M.L.S., Vergara, R.L., Manca, M., Tohme, R.A., Holmberg, S.D., Bressmann, T., Lirio, D.R., Román, J.S., Solís, R.G., Thakur, S., Rao, S.N., Modelado, E.L., La, A.D.E., Durante, C., Tradición, U.N.A., En, M., Espejo, E.L., Fuentes, D.E.L.A.S., Yucatán, U.A., De, Lenin, C.M., Cian, L.F., Douglas, M.J., Plata, L., Héritier, F.: Manual on the production and use of life food for aquaculture. Uma ética Para Quantos. (1996).

  26. American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF) Standard Methods for the Examination of Water and Wastewater (20th Edition), United Book Press, Inc., Baltimore, Maryland (1998)

  27. Lieve, M.L., Laurens, L.: Summative Mass Analysis of Algal Biomass—Integration of Analytical Procedures. Technical Report NREL/TP-5100–60943. (2013).

  28. Lourenco, S.O., Barbarino, E., Lavin, P.L., Marquez, U.M.L., Aidar, E.: Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 39(1), 17–32 (2004)

    Article  Google Scholar 

  29. Templeton, D.W., Laurens, L.M.L.: Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal Res. 11, 359–367 (2015)

    Article  Google Scholar 

  30. Burkhardt, S., Zondervan, I., Riebesell, U.: Effects of CO2 concentration on C:N: P ratio in marine phytoplankton: a species comparison. Limnol. Oceanogr. 44(3), 683–690 (1999)

    Article  Google Scholar 

  31. Yang, Y., Gao, K.S.: Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obli-quus (Chlorophyta). J. Appl. Phycol. 15(5), 379–389 (2003)

    Article  Google Scholar 

  32. Yoo, C., June, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M.: Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 101(1), 71–74 (2010)

    Article  Google Scholar 

  33. Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A.: Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy. 88(10), 3331–3335 (2011)

    Article  Google Scholar 

  34. Chiang, C.L., Lee, C.M., Chen, P.C.: Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour. Technol. 102(9), 5400–5405 (2011)

    Article  Google Scholar 

  35. Zheng, M., Ji, X., He, Y., Li, Z., Wang, M., Chen, B., Huang, J.: Simultaneous fixation of carbon dioxide and purification of undiluted swine slurry by culturing Chlorella vulgaris MBFJNU-1. Algal Res. 47, 101866 (2020)

    Article  Google Scholar 

  36. Ding, G.T., Yasin, N.H.M., Takriff, M.S., Kamarudin, K.F., Salihon, J., Yaakob, Z., Hakimi, N.I.N.M.: Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp UKM4 and Chlorella pyrenoidosa UKM7. J. Water Process Eng. 35, 101202 (2020)

    Article  Google Scholar 

  37. Ho, S.H., Chen, C.Y., Chang, J.S.: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244–252 (2012)

    Article  Google Scholar 

  38. Ho, S.H., Kondo, A., Haseunuma, T., Chang, J.S.: Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour. Technol. 143, 163–171 (2013)

    Article  Google Scholar 

  39. Almomani, F.A.: Assessment and modeling of microalgae growth considering the effects OF CO2, nutrients, dissolved organic carbon and solar irradiation. J. Environ. Manag. 247, 738–748 (2019)

    Article  Google Scholar 

  40. Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R.R., Znad, H., Tawalbeh, M.: Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci. Total Environ. 662, 662–671 (2019)

    Article  Google Scholar 

  41. Chen, Y., Xu, C., Vaidyanathan, S.: Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Appl. Energy. 261, 114420 (2020)

    Article  Google Scholar 

  42. Kim, Y.S., Park, H.I., Park, D.W.: Growth characteristics of spirulina platensis at different carbon dioxide concentration and flow rate. In: Proceedings of the 2003 Conference of the Korean Society of Environmental Engineers. 1357–1358 (2003).

  43. Park, H.M., Lee, S.D.: The effect of CO2 fixation for microalgae based on CO2 concentration and flow rate. J. Wetlands Res. 20(4), 363–369 (2018)

    Google Scholar 

  44. Almomani, F., Judd, S., Bhosale, R.R., Shurair, M., Aljaml, K., Khraisheh, M.: Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf. Environ. Prot. 124, 240–250 (2019)

    Article  Google Scholar 

  45. Znad, H., Ketife, A.M.D.A., Judd, S., AlMomani, F., Vuthaluru, H.B.: Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 110, 1–7 (2018)

    Article  Google Scholar 

  46. Metsoviti, M.N., Papapolymerou, G., Karapanagiotidis, I.T., Katsoulas, N.: Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants. 8(8), 279 (2019)

    Article  Google Scholar 

  47. AlMomani, F.A., Örmeci, B.: Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 95, 280–289 (2016)

    Article  Google Scholar 

  48. Zheng, Y., Chi, Z., Lucker, B., Chen, S.: Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour. Technol. 103, 484–488 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (Grant Number: 2017K1A3A1A67015923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyoun Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kumar, G., Bakonyi, P. et al. Comparative Evaluation of CO2 Fixation of Microalgae Strains at Various CO2 Aeration Conditions. Waste Biomass Valor 12, 2999–3007 (2021). https://doi.org/10.1007/s12649-020-01226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01226-8

Keywords

Navigation