Skip to main content
Log in

Fabrication of a glycerol-citrate polymer coated tricalcium phosphate bone cements: Structural investigation and material properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Calcium phosphate cements (CPCs) belong to one of the most prominent biomaterials used for filling and regeneration of hard tissues, however poor mechanical and biological properties limit their widespread use in some clinical applications. To solve these problems, a biodegradable glycerol-citrate (G-CA) polyester was synthesized and coated on tricalcium phosphate cement (TCP) powders in amounts up to 10 wt% of the G-CA content using a simple solution infiltration technique in ethanol solution. Chemical and structural analysis of the G-CA elastomer and TCP/G-CA composites were thoroughly analyzed with chromatographic techniques, solid-state nuclear magnetic resonance (ssNMR), differential scanning calorimetry and thermogravimetry (DSC/TG), X-ray diffraction (XRD), Fourier-Transform Infrared spectroscopy (FTIR) and field emission scanning electron microscopy (SEM). The results demonstrated that the incorporation of 2.5 and 5 wt% of G-CA into TCP cement led to a significant increase of mechanical strength of the cements due to the formation of thin and homogeneous elastomer coating on cement particles, reinforcing the microstructure through hydrogen bonds between residual COOH groups of polymer and surface phosphate groups of the cement matrix. Additional in vitro testing of extracts cytotoxicity revealed a high proliferation of osteoblasts in all composites, demonstrating a promising application potential in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1.

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Eliaz N, Metoki N (2017) Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties. Coating Technologies and Biomedical Applications Materials (Basel) 10:334

    Article  PubMed Central  CAS  Google Scholar 

  2. Sugawara A, Asaoka K, Ding SJ (2013) Calcium phosphate-based cements: clinical needs and recent progress. J Mater Chem B 1:1081–1089

    Article  CAS  PubMed  Google Scholar 

  3. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  CAS  PubMed  Google Scholar 

  4. Yubao L, Xingdong Z, de Groot K (1997) Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials 18:737–741

    Article  Google Scholar 

  5. Zhang J, Tancret F, Bouler JM (2012) Mechanical Properties of Calcium Phosphate Cements (CPC) for Bone Substitution: Influence of Fabrication and Microstructure. Key Eng Mater 493–494:409–414

    Google Scholar 

  6. Khashaba RM, Moussa MM, Mettenburg DJ, Rueggeberg FA, Chutkan NB, Borke JL (2010) Polymeric-calcium phosphate cement composites-material properties: in vitro and in vivo investigations. Int J Biomater 691452:14

    Google Scholar 

  7. Zhang JT, Liu WZ, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10:1035–1049.

  8. Sheikh Z, Abdallah MN, Hanafi AA, Misbahuddin S, Rashid H, Glogauer M (2015) Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials. Materials (Basel) 8:7913–7925

    Article  CAS  Google Scholar 

  9. Huang SH, Hsu TT, Huang TH, Lin CY, Shie MY (2017) Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications. J Dent Sci 12:33–43

    Article  PubMed  Google Scholar 

  10. Castro AGB, Polini A, Sander ZA, Leeuwenburgh CG, Jansen JA, Yang F, van den Beucke JJJP (2017) Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. J Mech Behav Biomed Mater 17:286–294

    Article  CAS  Google Scholar 

  11. Rödel M, Teßmar J, Grolland J, Gbureck U (2019) Tough and Elastic α-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker. Materials (Basel) 12:53

    Article  CAS  Google Scholar 

  12. Dagang G, Haoliang S, Kewei X, Yon H (2007) Long-Term Variations in Mechanical Properties and In Vivo Degradability of CPC/PLGA Composite. J Biomed Mater Res Part B Appl Biomater 82B:533–544

    Article  CAS  Google Scholar 

  13. Tran RT, Yang J, Ameer GA (2015) Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. Annu Rev Mater Res 45:277–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tisserat B, O'kuru RH, Hwang H, Mohamed AA, Holser R. (2012) Glycerol citrate polyesters produced through heating without catalysis. J Appl Polym Sci 125:3429–3437.

  15. Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, von Recum H (2014) A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J Biomed Mater Res A 102:1467–1477

    Article  PubMed  CAS  Google Scholar 

  16. Torres JAM, Marure AL, Hernández MG, Islas GB, Sánchez MÁD (2018) Synthesis and Characterization of Glycerol Citrate Polymer and Yttrium Oxide Nanoparticles as a Potential Antibacterial Material. Mater Trans 59:1915–1919

    Article  Google Scholar 

  17. Yang K, Zhang J, Ma X, Ma Y, Kan C, Ma H, Li Y, Yuan Y, Liu C (2015) β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Mat Sci Eng C 56:37–47

    Article  CAS  Google Scholar 

  18. Shen YQ, Zhu YJ, Yu HP, Qiang B (2018) Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interf Sci 530:9–15

    Article  CAS  Google Scholar 

  19. Kumari MC, Jaisankar V (2018) Synthesis and Characterisation of Poly (Glycerol-co-Citrate)/n-HAp Composite for Biomedical Applications. Mater Today Proc 5:8824–8831

    Article  CAS  Google Scholar 

  20. Ma Y, Zhang W, Wang Z, Wang Z, Xie Q, Niu H, Guo H, Yuan Y, Liu C (2016) PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomater 44:110–124

    Article  CAS  PubMed  Google Scholar 

  21. Perez RA, Kim HW, Ginebra MP (2012) Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 3:2041731412439555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kucko NW, Schickert SL, Marques TS, Herber RP, van den Beucken JJ, Zuo Y, Leeuwenburgh SC (2019) Tough and osteocompatible calcium phosphate cements reinforced with poly (vinyl alcohol) fibers. ACS Biomater Sci Eng 5:2491–2505

    Article  CAS  PubMed  Google Scholar 

  23. Geffers M, Groll J, Gbureck U (2015) Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements. Materials (Basel) 8:2700–2717

    Article  CAS  Google Scholar 

  24. Giretova M, Medvecky L, Stulajterova R, Sopcak T, Briancin J, Tatarkova M (2016) Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. J Mater Sci Mater Med 27:1–16

    Article  CAS  Google Scholar 

  25. Brus J (2000) Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl Magn Reson 16:151–160

    Article  CAS  PubMed  Google Scholar 

  26. Dickens-Venz SH, Takagi S, Chow LC, Bowen RL, Johnston AD, Dickens B (1994) Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent Mater 10:100–106

    Article  CAS  PubMed  Google Scholar 

  27. Mathew R, Gunawidjaja PN, Izquirdo-Barba I, Jansson K, Garcia A, Arcos D, Vallet-Regi M, Eden M (2011) Solid-State 31P and 1H NMR Investigations of Amorphous and Crystalline Calcium Phosphates Grown Biomimetically From a Mesoporous Bioactive Glass. J Phys Chem C 115:20572–20582

    Article  CAS  Google Scholar 

  28. Legrand AP, Sfihi H, Lequeux N, Lemaître J (2009) 31P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements. J Biomed Mater Res B App Biomater 91B:46–54.

  29. Berube MA, Schorr D, Ball RJ, Landry V, Blanchet P (2018) Determination of In Situ Esterification Parameters of Citric Acid- Glycerol Based Polymers for Wood Impregnation. J Polym Environ 26:970–979

    Article  CAS  Google Scholar 

  30. Holser RA (2008) Thermal Analysis of Glycerol Citrate/Starch Blends. J Appl Polym Sci 110:1498–1501

    Article  CAS  Google Scholar 

  31. Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–126

    Article  CAS  Google Scholar 

  32. Almazrouei M, Janajreh I (2020) Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol. Renew Energy 145:1693–1708

    Article  CAS  Google Scholar 

  33. Cicek G, Aksoy EA, Durucan C (2011) Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity. J Mater Sci Mater Med 22:809–817

    Article  CAS  PubMed  Google Scholar 

  34. Shirazi FS, Mehrali M, Oshkour AA, Metselaar HSC, Kadri NA, Osman NAA (2013) Characterization and Mechanical Properties of Calcium Silicate/Citric Acid-Based Polymer Composite Materials. Int J Appl Ceram Technol 12:1–6

    Google Scholar 

  35. Garcia PS, Grossmann MVE, Yamashita E (2011) Citric acid as multifunctional agent in blowing films of starch/PBAT. Quim Nova 34:1507–1510

    Article  CAS  Google Scholar 

  36. Mariano-Torres JA, López-Marure A, Domiguez-Sánchez MA (2015) Synthesis and characterization of polymers based on citric acid and glycerol: Its application in non-biodegradable polymers. DYNA 82:53–59

    Article  Google Scholar 

  37. Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–197

    Article  CAS  Google Scholar 

  38. Slosarczyk A, Paszkiewicz Z, Paluszkiewicz C (2005) FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct 744:657–661

    Article  CAS  Google Scholar 

  39. Pena J, Vallet-Regi M (2003) Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc 23:1687–1696

    Article  CAS  Google Scholar 

  40. Byler DM, Farrell HM Jr (1989) Infrared Spectroscopic Evidence for Calcium Ion Interaction with Carboxylate Groups of Casein. J Dairy Sci 72:1719–1723

    Article  CAS  Google Scholar 

  41. Carrodeguas RG, de Aza S (2011) α–Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 7:3536–3546

    Article  CAS  PubMed  Google Scholar 

  42. Shi R, Chen D, Liu Q, Wu Y, Xu X, Zhang L, Tian W (2009) Recent Advances in Synthetic Bioelastomers. Int J Mol Sci 10:4223–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tisserat B, O’kuru RH, Hwang HS, Mohamed AA, Holser R (2012) Glycerol citrate polyesters produced through heating without catalysis. J App Polymer Sci 125:3429–3437.

  44. Yang J, Webb AR, Ameer GA (2004) Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Adv Mater 16:511–516

    Article  CAS  Google Scholar 

  45. Essoua GG, Blanchet P, Landry V, Beauregard R (2016) Pine wood treated with a citric acid and glycerol mixture: Biomaterial performance improved by a bio-byproduct. BioRes 11:3049–3072

    CAS  Google Scholar 

  46. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442

    Article  CAS  Google Scholar 

  47. Arahira T, Maruta M, Matsuya S (2017) Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement. Mater Sci Eng C 74:478–484

    Article  CAS  Google Scholar 

  48. Bohner M (2004) New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. Biomaterials 25:741–749.

  49. Zou C, Cheng K, Weng W, Song C, Du P, Shen G, Han G (2011) Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J Alloys Compd 509:6852–6858

    Article  CAS  Google Scholar 

  50. Weichhold J, Gbureck U, Neunhoeffer FG, Hurle K (2019) Setting Mechanism of a CDHA Forming α-TCP Cement Modified with Sodium Phytate for Improved Injectability. Materials (Basel) 12:2098

    Article  CAS  PubMed Central  Google Scholar 

  51. Qiua H, Yanga J, Kodalib P, Kohb J, Ameera GA (2006) A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–5854

    Article  CAS  Google Scholar 

  52. Ma P, Li T, Wu W, Shi D, Duan F, Bai H, Dong W, Chen M (2014) Novel poly(xylitol sebacate)/hydroxyapatite bio-nanocomposites via one-step synthesis. Polym Degrad Stab 110:50–55

    Article  CAS  Google Scholar 

  53. Oda M, Takeuchi A, Lin X, Matsuya S, Ishikawa K (2008) Effects of liquid phase on basic properties of α-tricalcium phosphate-based apatite cement. Dent Mater J 27:672–677

    Article  CAS  PubMed  Google Scholar 

  54. Ambard AJ, Mueninghoff L (2006) Calcium Phosphate Cement: Review of Mechanical and Biological Properties. J Prosthodont 15:321–328

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Project No. 2/0034/21 and the Slovak Research and Development Agency under the contract No. APVV-17-0110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sopcak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10965_2021_2596_MOESM1_ESM.jpg

Supplementary file1 Fig.s1 (Supplementary material) GPC chromatogram of the synthesized G_CA elastomer with the relevant calibration points (JPG 390 KB)

Supplementary file2 (JPG 396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopcak, T., Medvecky, L., Giretova, M. et al. Fabrication of a glycerol-citrate polymer coated tricalcium phosphate bone cements: Structural investigation and material properties. J Polym Res 28, 231 (2021). https://doi.org/10.1007/s10965-021-02596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02596-w

Keywords

Navigation