Skip to main content
Log in

Direct measurement of the \(^{19}\)F(p,\(\alpha _0\))\(^{16}\)O reaction at E\(_{cm}\) = 0.4–0.9 MeV using the LHASA detector array

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(^{19}\)F(p,\(\alpha \))\(^{16}\)O reaction is of paramount importance for understanding the fluorine abundance in the outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post-AGB star nucleosynthesis. Theoretical models overestimate F abundances in AGB stars with respect to the observed values, thus calling for further investigation of the reactions involved in the fluorine nucleosynthesis. In the last years, new direct and indirect measurements improved significantly the knowledge of the \(^{19}\)F(p,\(\alpha _0\))\(^{16}\)O cross section at deeply sub-Coulomb energies (below 0.8 MeV). Those data are larger by a factor of about 1.4 with respect to the previous data reported in the NACRE compilation in the energy region 0.6–0.8 MeV. In order to solve these discrepancies, here we present a new direct experiment performed using a silicon strip detector array (LHASA – Large High-resolution Array of Silicon for Astrophysics). Our results clearly confirm the trend of the latest experimental data in the energy region of interest, pointing towards a larger S-factor value than the one reported in the NACRE compilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. S. Cristallo, O. Straniero, R. Gallino et al., ApJ 696, 797 (2009)

    Article  ADS  Google Scholar 

  2. H. Jonsson, N. Ryde, E. Spitoni, F. Matteucci et al., ApJ 835, 50 (2017)

    Article  ADS  Google Scholar 

  3. C. Abia, K. Cunha, S. Cristallo, P. Laverny, A &A 581, A88 (2015)

    Google Scholar 

  4. M. Lugaro, C. Ugalde, A.I. Karakas et al., ApJ 615, 934 (2004)

    Article  ADS  Google Scholar 

  5. M. Wiescher, J. Görres, H. Schatz, J. Phys. G Nucl. Part. Phys. 25, R133 (1999)

    Article  ADS  Google Scholar 

  6. C. Angulo, M. Arnould, M. Rayet et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  7. G. Breuer, Z. Phys. 154, 339 (1959)

    Article  ADS  Google Scholar 

  8. A. Isoya, Nucl. Phys. A 7, 126 (1959)

    Article  Google Scholar 

  9. R. Caracciolo, P. Cuzzocrea, A. De Rosa et al., Lett. Nuovo Cimento 11, 33 (1974)

    Article  Google Scholar 

  10. P. Cuzzocrea, A. De Rosa, G. Inglima et al., Lett. Nuovo Cimento 28, 515 (1980)

    Article  Google Scholar 

  11. C. Abia et al., ApJ 694, 971 (2009)

    Article  ADS  Google Scholar 

  12. C. Abia, K. Cunha, S. Cristallo et al., ApJ 715, L94 (2010)

    Article  ADS  Google Scholar 

  13. I. Lombardo, D. Dell’Aquila, L. Campajola et al., J. Phys. G Nucl. Part. Phys. 40, 125102 (2013)

    Article  ADS  Google Scholar 

  14. I. Lombardo, D. Dell’Aquila, A. Di Leva et al., Phys. Lett. B 748, 178 (2015)

    Article  ADS  Google Scholar 

  15. M. La Cognata, A.M. Mukhamedzhanov, C. Spitaleri et al., ApJL 739, L54 (2011)

  16. I. Indelicato, M. La Cognata, C. Spitaleri et al., ApJ 845, 19 (2017)

    Article  ADS  Google Scholar 

  17. S. Palmerini et al., J. Phys. Conf. Ser. 1308, 012016 (2019)

    Article  Google Scholar 

  18. D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller, Nucl. Phys. A 636, 249 (1998)

    Article  ADS  Google Scholar 

  19. M. La Cognata, S. Palmerini, C. Spitaleri et al., ApJ 805, 128 (2015)

    Article  ADS  Google Scholar 

  20. Micron Semiconductor, General catalogue. http://www.micronsemiconductor.co.uk/pdf/cat.pdf

  21. B.T. Roeder et al., NIM A 634, 71 (2011)

    Article  ADS  Google Scholar 

  22. D.W. Bardayan et al., Phys. Rev. C 63, 065802 (2001)

    Article  ADS  Google Scholar 

  23. D. Lattuada et al., EPJ Web Conf. 165, 01034 (2017)

    Article  Google Scholar 

  24. R. Brun, F. Rademakers, NIM A 389, 81 (1997)

    Article  ADS  Google Scholar 

  25. S. Chesnevskaya et al., JINST 13, T05006 (2018)

    Article  ADS  Google Scholar 

  26. R.J. deBoer et al., Phys. Rev. C 103, 055815 (2021)

    Article  ADS  Google Scholar 

  27. L.Y. Zhang et al., Phys. Rev. Lett. 127, 152702 (2021)

    Article  ADS  Google Scholar 

  28. L.Y. Zhang et al., Nature 610, 656 (2022)

    Article  ADS  Google Scholar 

  29. L.Y. Zhang et al., Phys. Rev. C 106, 055803 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Extreme Light Infrastructure Nuclear Physics Phase II, a project cofinanced by the Romanian Government and the European Union through the European Regional Development Fund – the Competitiveness Operational Programm (1/07.07.16, COP, ID1334), by ENSAR2, a project financed by the European Union’s Horizon 2020 research and innovation programm under grant agreement No. 654002 and by the funds DGAPA-UNAM IN107820 and CONACyT 315839. The authors are grateful to acknowledge the support of the staff of the LNS technical division, LNS accelerator divisions and the LNS target laboratory for the continuous and helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Guardo.

Additional information

Communicated by Anu Kankainen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardo, G.L., Petruse, T., Lattuada, D. et al. Direct measurement of the \(^{19}\)F(p,\(\alpha _0\))\(^{16}\)O reaction at E\(_{cm}\) = 0.4–0.9 MeV using the LHASA detector array. Eur. Phys. J. A 59, 65 (2023). https://doi.org/10.1140/epja/s10050-023-00957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00957-1

Navigation