Skip to main content
Log in

On linear continuous operators between distinguished spaces \(C_p(X)\)

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

As proved in Ka̧kol and Leiderman (Proc AMS Ser B 8:86–99, 2021), for a Tychonoff space X, a locally convex space \(C_{p}(X)\) is distinguished if and only if X is a \(\Delta \)-space. If there exists a linear continuous surjective mapping \(T:C_p(X) \rightarrow C_p(Y)\) and \(C_p(X)\) is distinguished, then \(C_p(Y)\) also is distinguished (Ka̧kol and Leiderman Proc AMS Ser B, 2021). Firstly, in this paper we explore the following question: Under which conditions the operator \(T:C_p(X) \rightarrow C_p(Y)\) above is open? Secondly, we devote a special attention to concrete distinguished spaces \(C_p([1,\alpha ])\), where \(\alpha \) is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping \(T:C_p([1,\alpha ]) \rightarrow C_p(Y)\) is given. We also observe that for every countable ordinal \(\alpha \) all closed linear subspaces of \(C_p([1,\alpha ])\) are distinguished, thereby answering an open question posed in Ka̧kol and Leiderman (Proc AMS Ser B, 2021). Using some properties of \(\Delta \)-spaces we prove that a linear continuous surjection \(T:C_p(X) \rightarrow C_k(X)_w\), where \(C_k(X)_w\) denotes the Banach space C(X) endowed with its weak topology, does not exist for every infinite metrizable compact C-space X (in particular, for every infinite compact \(X \subset {\mathbb {R}}^n\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We should mention that independently and simultaneously an analogous description of distinguished \(C_p\)-spaces (but formulated in different terms) appeared in [10].

References

  1. Alspach, D.E., Benyamini, Y.: \(C(K)\) quotients of separable \(\cal{L}_{\infty }\)-spaces. Israel J. Math. 32, 145–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkhangel’skiĭ, A.V.: \(C_{p}\)-theory. In: Hušek, M., Van Mill, J. (eds.) Recent Progress in General Topology, pp. 1–56. Elsevier, Oxford (1992)

    Google Scholar 

  3. Baars, J., de Groot, J.: An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces. Comment. Math. Univ. Carolinae 29, 577–595 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Banakh, T., Ka̧kol, J., Śliwa, W. : Josefson-Nissenzweig property for \(C_{p}\)-spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)

  5. Banakh, T., Ka̧kol, J., Schürz, J.: \(\omega ^\omega \)-Base and infinite-dimensional compact sets in locally convex spaces. Rev. Complut. (to appear)

  6. Bessaga, C., Pełczyński, A.: Spaces of continuous functions (IV). Stud. Math. 19, 53–62 (1960)

    Article  MATH  Google Scholar 

  7. Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 97, 159–188 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Ferrando, J.C., Ka̧kol, J.: Metrizable bounded sets in \(C(X)\) spaces and distinguished \(C_p(X)\) spaces. J. Convex. Anal. 26, 1337–1346 (2019)

  9. Ferrando, J. C., Ka̧kol, J., Leiderman, A., Saxon, S. A.: Distinguished \(C_{p}\left(X\right)\) spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115, Paper No. 27, 18 pp. (2021). https://doi.org/10.1007/s13398-020-00967-4

  10. Ferrando, J.C., Saxon, S.A.: If not distinguished, is \(C_{p}\left( X\right) \) even close? Proc. AMS 149, 2583–2596 (2021)

    Article  MATH  Google Scholar 

  11. Grothendieck, A.: Sur les espaces \((F)\) et \((DF)\). Summa Brasil. Math. 3, 57–123 (1954)

    MathSciNet  MATH  Google Scholar 

  12. Gul’ko, S.P.: The space \(C_{p}(X)\) for countable infinite compact \(X\) is uniformly homeomorphic to \(c_{0}\). Bull. Acad. Pol. Sci. 36, 391–396 (1988)

  13. Gul’ko, S.P.: Free topological groups and spaces of continuous functions on ordinals. Vestnik Tomsk State University 280, 34–38 (2003) (in Russian)

  14. Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  15. Johnson, W.B., Zippin, M.: On subspaces of quotients of \((\sum G_{n})_{\ell _{p}}\) and \((\sum G_{n})_{c_{0}}\). Israel J. Math. 13, 311–316 (1972)

    Article  MathSciNet  Google Scholar 

  16. Ka̧kol, J., Leiderman, A.: A characterization of \(X\) for which spaces \(C_{p}(X)\) are distinguished and its applications. Proc. AMS Ser. B 8, 86–99 (2021)

  17. Ka̧kol, J., Leiderman, A.: Basic properties of \(X\) for which spaces \(C_p(X)\) are distinguished. Proc. AMS Ser. B (2021) (to appear). arXiv:2104.10506

  18. Ka̧kol, J., Sobota, D., Marciszewski, W., Zdomskyy, L.: On complemented copies of the space \(c_0\) in spaces \(C_p(X\times Y)\), arXiv:2007.14723. Israel J. Math. (to appear)

  19. Kawamura, K., Leiderman, A.: Linear continuous surjections of \(C_p\)-spaces over compacta. Topol. Appl. 227, 135–145 (2017)

    Article  MATH  Google Scholar 

  20. Krupski, M.: On the weak and pointwise topologies in function spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110, 557–563 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krupski, M., Marciszewski, W.: A metrizable \(X\) with \(C_{p}(X)\) not homeomorphic to \(C_{p}(X)\times C_{p}(X)\). Israel J. Math. 214, 245–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krupski, M., Marciszewski, W.: On the weak and pointwise topologies in function spaces II. J. Math. Anal. Appl. 452, 646–658 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lancien, G.: A survey on the Szlenk index and some of its applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 100, 209–235 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Leiderman, A., Morris, S., Pestov, V.: Free abelian topological groups and the free locally convex space on the unit interval. J. Lond. Math. Soc. 56, 529–538 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leiderman, A., Levin, M., Pestov, V.: On linear continuous open surjections of the spaces \(C_p(X)\). Topol. Appl. 81, 269–279 (1997)

    Article  MATH  Google Scholar 

  26. Lotz, H.P., Peck, N.T., Porta, H.: Semi-embedding of Banach spaces. Proc. Edinburgh Math. Soc. 22, 233–240 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, Vol. 131. North-Holland, Amsterdam (1987)

  28. Reed, G.M.: On normality and countable paracompactness. Fund. Math. 110, 145–152 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rohm, D.M.: Products of infinite-dimensional spaces. Proc. AMS 108, 1019–1023 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosenthal, H.: The Banach space \(C(K)\). In: Johnson W. B., Lindenstrauss J. (eds.) Handbook of Geometry of Banach spaces (Vol. II, Chapter 36). Elsevier, pp. 1547–1602 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Leiderman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jerzy Ka̧kol: supported by the GAČR project 20-22230L and RVO: 67985840. The authors thank J. C. Ferrando for providing a short argument in Remark 2.5 (iii) and W. B. Johnson and T. Kania for a very helpful advice and discussion about Theorem 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ka̧kol, J., Leiderman, A. On linear continuous operators between distinguished spaces \(C_p(X)\). Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, 199 (2021). https://doi.org/10.1007/s13398-021-01121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01121-4

Keywords

Mathematics Subject Classification

Navigation