Skip to main content
Log in

Povzner–Wienholtz-Type Theorems for Sturm–Liouville Operators with Singular Coefficients

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We introduce and investigate symmetric operators \(L_0\) associated in the complex Hilbert space \(L^2({\mathbb {R}})\) with a formal differential expression

$$\begin{aligned} l[u] :=-(pu')'+qu + i((ru)'+ru') \end{aligned}$$

under minimal conditions on the regularity of the coefficients. They are assumed to satisfy conditions

$$\begin{aligned} q=Q'+s;\quad \frac{1}{\sqrt{|p|}}, \frac{Q}{\sqrt{|p|}}, \frac{r}{\sqrt{|p|}} \in L^2_{loc}\left( {\mathbb {R}}\right) , \quad s \in L^1_{loc}\left( {\mathbb {R}}\right) , \end{aligned}$$

where the derivative of the function Q is understood in the sense of distributions, and all functions p, Q, r, s are real-valued. In particular, the coefficients q and \(r'\) may be Radon measures on \({\mathbb {R}}\), while function p may be discontinuous. The main result of the paper are two sufficient conditions on the coefficient p which provide that the operator \(L_0\) being semi-bounded implies it being self-adjoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, London (1975)

    MATH  Google Scholar 

  2. Shubin, M.: Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. J. Funct. Anal. 186(1), 92–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Kostenko, A., Malamud, M.: Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set. J. Math. Phys. 51(10), 102102, 24 (2010)

  4. Hryniv, R.O., Mykytyuk, Ya.. V.: Self-adjointness of Schrödinger operators with singular potentials. Methods Funct. Anal. Topol. 18(2), 152–159 (2012)

    MATH  Google Scholar 

  5. Kostenko, A., Malamud, M., Nicolussi, M.: Glazman–Povzner–Wienholtz theorem on graphs. Adv. Math. 395, 108158, 30 (2022)

  6. Hartman, P.: Differential equations with non-oscillatory eigenfunctions. Duke Math. J. 15(3), 697–709 (1948). https://doi.org/10.1215/S0012-7094-48-01559-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122, 343–368 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Povzner, A.Ya.: The expansion of arbitrary functions in eigenfunctions of the operator \(-\Delta u+cu\). Mat. Sbornik N.S. 32, 109–156 (1953) (in Russian) (translation in Am. Math. Soc. Trans. 60(2), 1–49 (1967))

  9. Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus. Math. Ann. 135, 50–80 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hinz, A.M.: Regularity of solutions for singular Schrödinger equations. Rev. Math. Phys. 4(1), 95–161 (1992). https://doi.org/10.1142/S0129055X92000054

    Article  MathSciNet  MATH  Google Scholar 

  11. Schmincke, U.-W.: Proofs of Povzner–Wienholtz type theorems on selfadjointness of Schrödinger operators by means of positive eigensolutions. Bull. Lond. Math. Soc. 23(3), 263–266 (1991). https://doi.org/10.1112/blms/23.3.263

    Article  MathSciNet  MATH  Google Scholar 

  12. Simader, C.G.: Essential self-adjointness of Schrödinger operators bounded from below. Math. Z. 159(1), 47–50 (1978). https://doi.org/10.1007/BF01174567

    Article  MathSciNet  MATH  Google Scholar 

  13. Simader, C.G.: Remarks on essential self-adjointness of Schrödinger operators with singular electrostatic potential. J. Reine Angew. Math. 431, 1–6 (1992). https://doi.org/10.1515/crll.1992.431.1

    Article  MathSciNet  MATH  Google Scholar 

  14. Berezanskii, Ju.: Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Mongraphs, vol. 17. American Mathematical Society, Providence (1968)

  15. Berezanskii, Yu.M., Samoilenko, V.G.: On the self-adjointness of differential operators with finitely or infinitely many variables, and evolution equations. Russ. Math. Surv. 36(5), 1–62 (1981). https://doi.org/10.1070/RM1981v036n05ABEH003029

    Article  Google Scholar 

  16. Orochko, Yu.B.: The hyperbolic equation method in the theory of operators of Schrödinger type with a locally integrable potential. Russ. Math. Surv. 43(2), 51–102 (1988). https://doi.org/10.1070/RM1988v043n02ABEH001728

    Article  MathSciNet  MATH  Google Scholar 

  17. Rofe-Beketov, F.S.: Necessary and sufficient conditions for a finite propagation rate for elliptic operators. Ukr. Math. J. 37(5), 547–549 (1985). https://doi.org/10.1007/BF01061187

    Article  MATH  Google Scholar 

  18. Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrödinger type operators on manifolds. Russ. Math. Surv. 57(4), 641–692 (2002). https://doi.org/10.1070/RM2002v057n04ABEH000532

    Article  MATH  Google Scholar 

  19. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  20. Eckhardt, J., Teschl, G.: Sturm–Liouville operators with measure-valued coefficients. J. Anal. Math. 120(1), 151–224 (2013). https://doi.org/10.1007/s11854-013-0018-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Mikhailets, V., Sobolev, A.: Common eigenvalue problem and periodic Schrödinger operators. J. Funct. Anal. 165(1), 150–172 (1999). https://doi.org/10.1006/jfan.1999.3406

    Article  MathSciNet  MATH  Google Scholar 

  22. Zettl, A.: Formally self-adjoint quasi-differential operator. Rocky Mt. J. Math. 5(3), 453–474 (1975). https://doi.org/10.1216/RMJ-1975-5-3-453

    Article  MathSciNet  MATH  Google Scholar 

  23. Goriunov, A., Mikhailets, V.: Regularization of singular Sturm–Liouville equations. Methods Funct. Anal. Topol. 16(2), 120–130 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Goriunov, A., Mikhailets, V., Pankrashkin, K.: Formally self-adjoint quasi-differential operators and boundary value problems. Electron. J. Differ. Equ. 2013(101), 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials. Opusc. Math. 33(3), 467–563 (2013). https://doi.org/10.7494/OpMath.2013.33.3.467

    Article  MathSciNet  MATH  Google Scholar 

  26. Zettl, A.: Sturm–Liouville Theory. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  27. Stetkaer-Hansen, H.: A generalization of a theorem of Wienholtz concerning essential selfadjointness of singular elliptic operators. Math. Scand. 19, 108–112 (1966). https://doi.org/10.7146/math.scand.a-10798

    Article  MathSciNet  MATH  Google Scholar 

  28. Clark, S., Gesztesy, F.: On Povzner–Weinholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators. Proc. R. Soc. Edinb. Sect. A 133(4), 747–758 (2003). https://doi.org/10.1017/S0308210500002651

    Article  MATH  Google Scholar 

  29. Mikhailets, V., Molyboga, V.: Remarks on Schrödinger operators with singular matrix potentials. Methods Funct. Anal. Topol. 19(2), 161–167 (2013)

    MATH  Google Scholar 

  30. Mikhailets, V., Murach, A., Novikov, V.: Localization principles for Schrödinger operator with a singular matrix potential. Methods Funct. Anal. Topol. 23(4), 367–377 (2017)

    MATH  Google Scholar 

  31. Mikhailets, V., Molyboga, V.: Schrödinger operators with measure-valued potentials: semiboundness and spectrum. Methods Funct. Anal. Topol. 24(3), 240–254 (2018)

    MATH  Google Scholar 

  32. Naimark, M.: Linear Differential Operators. Harrap, London (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Mikhailets.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Spectral Theory and Operators in Mathematical Physics” edited by Jussi Behrndt and Fabrizio Colombo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailets, V., Goriunov, A. & Molyboga, V. Povzner–Wienholtz-Type Theorems for Sturm–Liouville Operators with Singular Coefficients. Complex Anal. Oper. Theory 16, 113 (2022). https://doi.org/10.1007/s11785-022-01291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01291-y

Keywords

Mathematics Subject Classification

Navigation