Skip to main content
Log in

Magnetic Field and Density Models in the Zebra Source Region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using model frequencies, we find that the determined gyro-harmonic number and corresponding magnetic field depend on the model used. We show that all previously analyzed zebras, where the absolute value of the difference between neighboring zebra-stripe frequencies increases with respect to increasing frequency, can be well fitted by the model with exponential dependencies of the magnetic field and density or by the model with smaller gradients of both of these variables. Although these models give different results, their more sophisticated versions give more similar results. We also present the models that can fit the zebras, if observed, where the absolute value of the difference between neighboring zebra-stripe frequencies decreases with respect to increasing frequency. We check all these models by a fitting of the zebra-stripe frequencies observed in the 21 June 2011 zebra event. In one model, although it reasonably describes the conditions in the atmosphere above the active region, the fit of the observed zebra-stripe frequencies could not be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aschwanden, M.J., Benz, A.O.: 1995, Chromospheric evaporation and decimetric radio emission in solar flares. Astrophys. J. 438, 997. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, B., Bastian, T.S., Gary, D.E., Jing, J.: 2011, Spatially and spectrally resolved observations of a Zebra pattern in a solar decimetric radio burst. Astrophys. J. 736, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.: 2011, Fine Structure of Solar Radio Bursts, Astrophys. Space Scien. Lib. Springer, Heidelberg. ADS.

    Book  Google Scholar 

  • Chernov, G.P.: 2006, Solar radio bursts with drifting stripes in emission and absorption. Space Sci. Rev. 127, 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dulk, G.A., McLean, D.J.: 1978, Coronal magnetic fields. Solar Phys. 57, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaneda, K., Misawa, H., Iwai, K., Masuda, S., Tsuchiya, F., Katoh, Y., Obara, T.: 2018, Detection of propagating fast sausage waves through detailed analysis of a Zebra-pattern fine structure in a solar radio burst. Astrophys. J. Lett. 855, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 2022, Simulations of solar radio zebras. Astron. Astrophys. 661, A56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2018, Determination of plasma parameters in radio sources of solar Zebra-patterns based on relations between the Zebra-stripe frequencies and gyro-harmonic numbers. Astrophys. J. 867, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2000, Cross-sectional properties of coronal loops. Solar Phys. 193, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuijpers, J.: 1980, Theory of type IV DM bursts. In: Kundu, M.R., Gergely, T.E. (eds.): Radio Physics of the Sun, IAU Symp. 86, 341. ADS.

    Chapter  Google Scholar 

  • Kuijpers, J.M.E.: 1975, Collective wave-particle interactions in solar type IV radio sources. PhD thesis, Utrecht, Rijksuniversiteit, Doctor in de Wiskunde en Natuurwetenschappen Dissertation. 1975, 72 p. ADS.

  • Kuznetsov, A.A., Tsap, Y.T.: 2007, Loss-cone instability and formation of zebra patterns in type IV solar radio bursts. Solar Phys. 241, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mollwo, L.: 1983, Interpretation of patterns of drifting ZEBRA stripes. Solar Phys. 83, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mollwo, L.: 1988, The magneto-hydrostatic field in the region of ZEBRA patterns in solar type IV dm-bursts. Solar Phys. 116, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, UK. ADS.

    Book  Google Scholar 

  • Slottje, C.: 1981, Atlas of Fine Structures of Dynamics Spectra of Solar Type IV-dm and Some Type II Radio Bursts. Dwingeloo Observatory, The Netherlands. ADS.

    Google Scholar 

  • Tan, B., Yan, Y., Tan, C., Sych, R., Gao, G.: 2012, Microwave Zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys. J. 744, 166. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, B., Tan, C., Zhang, Y., Mészárosová, H., Karlický, M.: 2014, Statistics and classification of the microwave zebra patterns associated with solar flares. Astrophys. J. 780, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Winglee, R.M., Dulk, G.A.: 1986, The electron-cyclotron maser instability as a source of plasma radiation. Astrophys. J. 307, 808. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V.: 2021, On the magnetoacoustic waves and physical conditions in Zebra radio sources. Solar Phys. 296, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Chernov, G.P.: 2020, Alternative models of Zebra patterns in the event on June 21, 2011. Solar Phys. 295, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M.: 2020, Magnetic field, electron density and their spatial scales in Zebra pattern radio sources. Solar Phys. 295, 96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, S., Yan, Y., Tan, B.: 2012, Relaxation of magnetic field relative to plasma density revealed from microwave Zebra patterns associated with solar flares. Astrophys. J. 761, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra-pattern. Solar Phys. 44, 461. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y., Zaitsev, V.V., Shaposhnikov, V.E.: 2016, Double plasma resonance and its manifestations in radio astronomy. Phys. Usp. 59, 997. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y., Zaitsev, V.V., Aurass, H., Mann, G., Hofmann, A.: 2003, Solar type IV burst spectral fine structures. II. Source model. Astron. Astrophys. 410, 1011. DOI. ADS.

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

M. Karlický acknowledges support from the project RVO-67985815 and GA ČR grants 20-09922J, 20-07908S, 21-16508J and 22-34841S. L.V. Yasnov acknowledges support from the Russian Foundation for Basic Research, Grant 18-29- 21016.

Author information

Authors and Affiliations

Authors

Contributions

L. Y. made all computations. M. K. prepared the English version of the manuscript. Both authors reviewed the manuscript.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Karlický, M. Magnetic Field and Density Models in the Zebra Source Region. Sol Phys 297, 133 (2022). https://doi.org/10.1007/s11207-022-02067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02067-5

Keywords

Navigation