Skip to main content

Peptidomics and Capillary Electrophoresis

  • Chapter
  • First Online:
Separation Techniques Applied to Omics Sciences

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1336))

Abstract

Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the “peptidome,” the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer disease

BGE:

background electrolyte

BLAST:

basic local alignment search tool

BPE:

base peak electropherogram

CE:

capillary electrophoresis

CID:

collision-induced dissociation

CKD:

chronic kidney disease

CSF:

cerebrospinal fluid

ECD:

electron capture dissociation

EIE:

extracted ion electropherogram

EOF:

electroosmotic flow

ESI:

electrospray ionization

ETD:

electron transfer dissociation

FDR:

false discovery rate

FT-ICR:

Fourier-transform ion cyclotron resonance

HCD:

high-energy collisional dissociation

IEF:

isoelectric focusing

ITP:

isotachophoresis

IT:

ion trap

LC:

liquid chromatography

MALDI:

matrix-assisted laser desorption ionization

MRM:

multiple reaction monitoring

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

PTM:

posttranslational modification

RP:

reversed-phase

SDS:

sodium dodecyl sulfate

SPE:

solid-phase extraction

SPME:

solid-phase microextraction

SRM:

selected reaction monitoring

TOF:

time of flight

References

  1. Saz JM, Marina ML (2008) Application of micro- and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. J Sep Sci 31:446–458

    Article  CAS  PubMed  Google Scholar 

  2. Khalaf R, Baur D, Pfister D (2015) Optimization of reversed-phase chromatography methods for peptide analytics. J Chromatogr A 1425:198–203

    Article  CAS  PubMed  Google Scholar 

  3. Le Maux S, Nongonierma AB, FitzGerald RJ (2015) Improved short peptide identification using HILIC-MS/MS: retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chem 173:847–854

    Article  PubMed  CAS  Google Scholar 

  4. Kašička V (2018) Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 39:209–234

    Article  PubMed  CAS  Google Scholar 

  5. Mikšík I (2019) Coupling of CE-MS for protein and peptide analysis. J Sep Sci 42:385–397

    Article  PubMed  CAS  Google Scholar 

  6. Ramstrom M, Bergquist J (2004) Miniaturized proteomics and peptidomics using capillary liquid separation and high mass spectrometry. FEBS Lett 567:92–95

    Article  CAS  PubMed  Google Scholar 

  7. Holtta M, Zetterberg H, Mirgorodskaya E, Mattsson N, Blennow K, Gobom J (2012) Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS One 7:Art. no. e42555

    Article  CAS  Google Scholar 

  8. Štěpánová S, Kašička V (2016) Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 39:198–211

    Article  PubMed  CAS  Google Scholar 

  9. Štěpánová S, Kašička V (2019) Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 42:398–414

    Article  PubMed  CAS  Google Scholar 

  10. Jurgens M, Schrader M (2002) Peptidomic approaches in proteomic research. Curr Opin Mol Ther 4:236–241

    CAS  PubMed  Google Scholar 

  11. Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics. J Chromatogr B 803:3–16

    Article  CAS  Google Scholar 

  12. Ivanov VT, Yatskin ON (2005) Peptidomics: a logical sequel to proteomics. Expert Rev Proteomics 2:463–473

    Article  CAS  PubMed  Google Scholar 

  13. Schulz-Knappe P, Schrader M, Zucht HD (2005) The peptidomics concept. Comb Chem High Throughput Screen 8:697–704

    Article  CAS  PubMed  Google Scholar 

  14. Soloviev M, Shaw C, Andrén P (2008) Peptidomics: methods and applications. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  15. Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182

    Article  CAS  Google Scholar 

  16. Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan JN, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS (2015) Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteome 127:300–309

    Article  CAS  Google Scholar 

  18. Schrader M (2018) Origins, technological development, and applications of peptidomics. Methods Mol Biol 1719:3–39

    Article  CAS  PubMed  Google Scholar 

  19. Romanova EV, Sweedler JV (2015) Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 36:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agyei D, Tsopmo A, Udenigwe CC (2018) Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 410:3463–3472

    Article  CAS  PubMed  Google Scholar 

  21. Schrader M, Selle H (2006) The process chain for peptidomic biomarker discovery. Dis Markers 22:27–37

    Article  CAS  PubMed  Google Scholar 

  22. Bauca JM, Martinez-Morillo E, Diamandis EP (2014) Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem 60:1052–1061

    Article  CAS  PubMed  Google Scholar 

  23. Di Meo A, Pasic MD, Yousef GM (2016) Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 7:52460–52474

    Article  PubMed  PubMed Central  Google Scholar 

  24. Picariello G, Mamone G, Nitride C, Addeo F, Ferranti P (2013) Protein digestomics: integrated platforms to study food-protein digestion and derived functional and active peptides. Trends Anal Chem 52:120–134

    Article  CAS  Google Scholar 

  25. Toldra F, Reig M, Aristoy MC, Mora L (2018) Generation of bioactive peptides during food processing. Food Chem 267:395–404

    Article  CAS  PubMed  Google Scholar 

  26. Crameri R (2005) The potential of proteomics and peptidomics for allergy and asthma research. Allergy 60:1227–1237

    Article  CAS  PubMed  Google Scholar 

  27. Krochmal M, Schanstra JP, Mischak H (2018) Urinary peptidomics in kidney disease and drug research. Expert Opin Drug Discovery 13:259–268

    Article  CAS  Google Scholar 

  28. Clynen E, Baggerman G, Husson SJ, Landuyt B, Schoofs L (2008) Peptidomics in drug research. Expert Opin Drug Discovery 3:425–440

    Article  CAS  Google Scholar 

  29. Tsiatsiani L, Heck AJR (2015) Proteomics beyond trypsin. FEBS J 282:2612–2626

    Article  CAS  PubMed  Google Scholar 

  30. Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11:993–1006

    Article  CAS  PubMed  Google Scholar 

  31. Tinoco AD, Saghatelian A (2011) Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50:7447–7461

    Article  CAS  PubMed  Google Scholar 

  32. Sun LL, Zhu GJ, Yan XJ, Zhang ZB, Wojcik R, Champion MM, Dovichi NJ (2016) Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics 16:188–196

    Article  CAS  PubMed  Google Scholar 

  33. Vitorino R (2018) Digging deep into peptidomics applied to body fluids. Proteomics 18:Art. No. 1700401. https://doi.org/10.1002/pmic.201700401

    Article  CAS  Google Scholar 

  34. Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S (2019) High-resolution nano-liquid chromatography with tandem mass spectrometric detection for the bottom-up analysis of complex proteomic samples. Chromatographia 82:101–110

    Article  CAS  Google Scholar 

  35. Gan JN, Robinson RC, Wang JQ, Krishnakumar N, Manning CJ, Lor Y, Breck M, Barile D, German JB (2019) Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem 274:766–774

    Article  CAS  PubMed  Google Scholar 

  36. Chen DY, Shen XJ, Sun LL (2017) Capillary zone electrophoresis-mass spectrometry with microliter-scale loading capacity, 140 min separation window and high peak capacity for bottom-up proteomics. Analyst 142:2118–2127

    Article  CAS  PubMed  Google Scholar 

  37. Lubeckyj RA, McCool EN, Shen XJ, Kou Q, Liu XW, Sun LL (2017) Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. Anal Chem 89:12059–12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mullen W, Albalat A, Gonzalez J, Zerefos P, Siwy J, Franke J, Mischak H (2012) Performance of different separation methods interfaced in the same MS-reflection TOF detector: a comparison of performance between CE versus HPLC for biomarker analysis. Electrophoresis 33:567–574

    Article  CAS  PubMed  Google Scholar 

  39. Li YH, Champion MM, Sun LL, Champion PAD, Wojcik R, Dovichi NJ (2012) Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem 84:1617–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH (2013) Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics 12:2640–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klein J, Papadopoulos T, Mischak H, Mullen W (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35:1060–1064

    Article  CAS  PubMed  Google Scholar 

  42. Chen DY, Shen XJ, Sun LL (2018) Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics. Anal Chim Acta 1012:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boonen K, Creemers JW, Schoofs L (2009) Bioactive peptides, networks and systems biology. BioEssays 31:300–314

    Article  CAS  PubMed  Google Scholar 

  44. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr B 849:1–31

    Article  CAS  Google Scholar 

  45. Finoulst I, Pinkse M, Van Dongen W, Verhaert P (2011) Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol:Article No. 245291. https://doi.org/10.1155/2011/245291

  46. Niu ZL, Zhang WW, Yu CW, Zhang J, Wen YY (2018) Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Anal Chem 102:123–146

    Article  CAS  Google Scholar 

  47. Xue YJ, Gao H, Ji QC, Lam Z, Fang XP, Lin ZP, Hoffman M, Schulz-Jander D, Weng ND (2012) Bioanalysis of drug in tissue: current status and challenges. Bioanalysis 4:2637–2653

    Article  CAS  PubMed  Google Scholar 

  48. Smith KM, Xu Y (2012) Tissue sample preparation in bioanalytical assays. Bioanalysis 4:741–749

    Article  CAS  PubMed  Google Scholar 

  49. Aristoteli LP, Molloy MP, Baker MS (2007) Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J Proteome Res 6:571–581

    Article  CAS  PubMed  Google Scholar 

  50. Vitorino R, Barros AS, Caseiro A, Ferreira R, Amado F (2012) Evaluation of different extraction procedures for salivary peptide analysis. Talanta 94:209–215

    Article  CAS  PubMed  Google Scholar 

  51. Maes E, Oeyen E, Boonen K, Schildermans K, Mertens I, Pauwels P, Valkenborg D, Baggerman G (2018) The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom Rev. https://doi.org/10.1002/mas.21581

  52. Li Y, Zhang XM, Deng CH (2013) Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev 42:8517–8539

    Article  CAS  PubMed  Google Scholar 

  53. Kamphorst JJ, Tjaden UR, van der Heijden R, DeGroot J, Van der Greef J, Hankemeier T (2009) Feasibility of electrodialysis as a fast and selective sample preparation method for the profiling of low-abundant peptides in biofluids. Electrophoresis 30:2284–2292

    Article  CAS  PubMed  Google Scholar 

  54. Lindenburg PW, Ramautar R, Hankemeier T (2013) The potential of electrophoretic sample pretreatment techniques and new instrumentation for bioanalysis, with a focus on peptidomics and metabolomics. Bioanalysis 5:2785–2801

    Article  CAS  PubMed  Google Scholar 

  55. Anderson NL, Anderson NG (2002) The human plasma proteome – history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  56. Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, Walden M, Ross M, Eltze E, Bettendorf O, Wulfing C, Semjonow A (2005) Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 26:2797–2808

    Article  CAS  PubMed  Google Scholar 

  57. Mischak H, Vlahou A, Ioannidis JPA (2013) Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem 46:432–443

    Article  CAS  PubMed  Google Scholar 

  58. Magalhaes P, Pontillo C, Pejchinovski M, Siwy J, Krochmal M, Makridakis M, Carrick E, Klein J, Mullen W, Jankowski J, Vlahou A, Mischak H, Schanstra JP, Zurbig P, Pape L (2018) Comparison of urine and plasma peptidome indicates selectivity in renal peptide handling. Proteomics Clin Appl 12:Article Number: 1700163. https://doi.org/10.1002/prca.201700163

    Article  CAS  Google Scholar 

  59. Jahn H, Wittke S, Zurbig P, Raedler TJ, Arlt S, Kellmann M, Mullen W, Eichenlaub M, Mischak H, Wiedemann K (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One 6:Art. No.: e26540. https://doi.org/10.1371/journal.pone.0026540

    Article  CAS  Google Scholar 

  60. Herrero M, Ibanez E, Cifuentes A (2008) Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 29:2148–2160

    Article  CAS  PubMed  Google Scholar 

  61. Simo C, Cifuentes A, Kašička V (2013) Capillary electrophoresis-mass spectrometry for peptide analysis: target-based approaches and proteomics/peptidomics strategies. In: Volpi N, Maccari F (eds) Capillary electrophoresis of biomolecules. Methods and protocols. Humana Press (Springer), New York, pp 139–151

    Chapter  Google Scholar 

  62. Robledo VR, Smyth WF (2014) Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 35:2292–2308

    Article  CAS  PubMed  Google Scholar 

  63. Wang JH, Jiang XY, Sturm RM, Li LJ (2009) Combining tissue extraction and off-line capillary electrophoresis matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for neuropeptide analysis in individual neuronal organs using 2,5-dihydroxybenzoic acid as a multi-functional agent. J Chromatogr A 1216:8283–8288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang JH, Zhang YZ, Xiang F, Zhang ZC, Li LJ (2010) Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics. J Chromatogr A 1217:4463–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rejtar T, Hu P, Juhasz P, Campbell JM, Vestal ML, Preisler J, Karger BL (2002) Off-line coupling of high-resolution capillary electrophoresis to MALDI-TOF and TOF/TOF MS. J Proteome Res 1:171–179

    Article  CAS  PubMed  Google Scholar 

  66. Mischak H, Kaiser T, Walden M, Hillmann M, Wittke S, Herrmann A, Knueppel S, Haller H, Fliser D (2004) Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci 107:485–495

    Article  CAS  Google Scholar 

  67. Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K (2005) Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 26:1476–1487

    Article  CAS  PubMed  Google Scholar 

  68. Zurbig P, Renfrow MB, Schiffer E, Novak J, Walden M, Wittke S, Just I, Pelzing M, Neusüss C, Theodorescu D, Root KE, Ross MM, Mischak H (2006) Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 27:2111–2125

    Article  PubMed  CAS  Google Scholar 

  69. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW (2018) Capillary electrophoresis: trends and recent advances. Anal Chem 90:1464–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hajba L, Guttman A (2017) Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal Chem 90:38–44

    Article  CAS  Google Scholar 

  71. Huhn C, Ramautar R, Wuhrer M, Somsen GW (2010) Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 396:297–314

    Article  CAS  PubMed  Google Scholar 

  72. Faserl K, Sarg B, Gruber P, Lindner HH (2018) Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 39:1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kitagawa F, Otsuka K (2014) Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J Chromatogr A 1335:43–60

    Article  CAS  PubMed  Google Scholar 

  74. Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wüthrich A, Dawod M, Quirino JP (2019) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 40:17–39

    Article  CAS  PubMed  Google Scholar 

  75. Šlampová A, Malá Z, Gebauer P (2019) Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 40:40–54

    Article  PubMed  CAS  Google Scholar 

  76. Guo XJ, Fillmore TL, Gao YQ, Tang KQ (2016) Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal Chem 88:4418–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Malá Z, Gebauer P (2019) Recent progress in analytical capillary isotachophoresis. Electrophoresis 40:55–64

    Article  PubMed  CAS  Google Scholar 

  78. Zhu GJ, Sun LL, Dovichi NJ (2016) Dynamic pH junction preconcentration in capillary electrophoresis-electrospray ionization-mass spectrometry for proteomics analysis. Analyst 141:5216–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramautar R, Somsen GW, de Jong GJ (2016) Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015. Electrophoresis 37:35–44

    Article  CAS  PubMed  Google Scholar 

  80. Kohler I, Schappler J, Rudaz S (2013) Microextraction techniques combined with capillary electrophoresis in bioanalysis. Anal Bioanal Chem 405:125–141

    Article  CAS  PubMed  Google Scholar 

  81. Lindenburg PW, Haselberg R, Rozing G, Ramautar R (2015) Developments in interfacing designs for CE-MS: towards enabling tools for proteomics and metabolomics. Chromatographia 78:367–377

    Article  CAS  Google Scholar 

  82. Týčová A, Ledvina V, Klepárník K (2017) Recent advances in CE-MS coupling: instrumentation, methodology, and applications. Electrophoresis 38:115–134

    Article  PubMed  CAS  Google Scholar 

  83. Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neusüss C (2019) Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis 40:79–112

    Article  CAS  PubMed  Google Scholar 

  84. Hocker O, Montealegre C, Neusüss C (2018) Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem 410:5265–5275

    Article  PubMed  CAS  Google Scholar 

  85. Shen YF, Tolic N, Xie F, Zhao R, Purvine SO, Schepmoes AA, Ronald JM, Anderson GA, Smith RD (2011) Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10:3929–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Azkargorta M, Soria J, Ojeda C, Guzman F, Acera A, Iloro I, Suarez T, Elortza F (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 14:2649–2658

    Article  CAS  PubMed  Google Scholar 

  87. Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF (2009) Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 28:703–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Menschaert G, Van de Kerckhove TTM, Baggerman G, Schoofs L, Luyten W, Van Criekinge W (2010) Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res 9:2051–2061

    Article  CAS  PubMed  Google Scholar 

  89. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  90. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  91. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  PubMed  Google Scholar 

  92. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang XY, Shi WY, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    Article  CAS  PubMed  Google Scholar 

  93. Jimenez CR, Huang L, Qiu Y, Burlingame AL (1998) Searching sequence databases over the internet: protein identification using MS-fit. Curr Protoc Protein Sci 14:unit 16.5

    Google Scholar 

  94. Han X, He L, Xin L, Shan BZ, Ma B (2011) PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res 10:2930–2936

    Article  CAS  PubMed  Google Scholar 

  95. Falth M, Skold K, Norrman M, Svensson M, Fenyo D, Andren PE (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5:998–1005

    Article  PubMed  CAS  Google Scholar 

  96. Zamyatnin AA, Borchikov AS, Vladimirov MG, Voronina OL (2006) The EROP-Moscow oligopeptide database. Nucleic Acids Res 34:D261–D266

    Article  CAS  PubMed  Google Scholar 

  97. Liu F, Baggerman G, Schoofs L, Wets G (2008) The construction of a bioactive peptide database in Metazoa. J Proteome Res 7:4119–4131

    Article  CAS  PubMed  Google Scholar 

  98. Minamino N (2001) Peptidome: the fact-database for endogenous peptides. Tanpakushitsu Kakusan Koso 46:1510–1517

    CAS  PubMed  Google Scholar 

  99. Falth M, Svensson M, Nilsson A, Skold K, Fenyo D, Andren PE (2008) Validation of endogenous peptide identifications using a database of tandem mass spectra. J Proteome Res 7:3049–3053

    Article  CAS  PubMed  Google Scholar 

  100. Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31:427–445

    Article  CAS  PubMed  Google Scholar 

  101. Ma B, Lajoie G (2009) De novo interpretation of tandem mass spectra. Curr Protoc Bioinformatics 25:Chapter 13, Unit 10. https://doi.org/10.1002/0471250953.bi1310s25

    Article  Google Scholar 

  102. Frank A, Pevzner P (2005) PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal Chem 77:964–973

    Article  CAS  PubMed  Google Scholar 

  103. Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA (2007) De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 6:114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Frank AM (2009) A ranking-based scoring function for peptide-spectrum matches. J Proteome Res 8:2241–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frank AM (2009) Predicting intensity ranks of peptide fragment ions. J Proteome Res 8:2226–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6:327–342

    Article  CAS  PubMed  Google Scholar 

  107. Tabb DL, Ma ZQ, Martin DB, Ham AJL, Chambers MC (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7:3838–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jimenez CR, Huang L, Qiu Y, Burlingame AL (1998) Searching sequence databases over the internet: protein identification using MS-tag. Curr Protoc Protein Sci 14:Chapter 16, unit 16.6. https://doi.org/10.1002/0471140864.ps1606s14

    Article  Google Scholar 

  109. Shen YF, Tolic N, Hixson KK, Purvine SO, Pasa-Tolic L, Qian WJ, Adkins JN, Moore RJ, Smith RD (2008) Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates using unique sequence tags. Anal Chem 80:1871–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Simo C, Gonzalez R, Barbas C, Cifuentes A (2005) Combining peptide modeling and capillary electrophoresis mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine pepsin A. Anal Chem 77:7709–7716

    Article  CAS  PubMed  Google Scholar 

  111. Catala-Clariana S, Benavente F, Gimenez E, Barbosa J, Sanz-Nebot V (2013) Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior. Electrophoresis 34:1886–1894

    Article  CAS  PubMed  Google Scholar 

  112. Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V (2015) Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry. Anal Chim Acta 854:169–177

    Article  CAS  PubMed  Google Scholar 

  113. Metzger J, Luppa PB, Good DM, Mischak H (2009) Adapting mass spectrometry-based platforms for clinical proteomics applications: the capillary electrophoresis coupled mass spectrometry paradigm. Crit Rev Clin Lab Sci 46:129–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Romanova EV, Dowd SE, Sweedler JV (2013) Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 17:801–808

    Article  CAS  PubMed  Google Scholar 

  115. Fricker LD, Lim JY, Pan H, Che FY (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344

    Article  CAS  PubMed  Google Scholar 

  116. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  PubMed  Google Scholar 

  117. Fricker L (2018) Quantitative peptidomics: general considerations. Methods Mol Biol 1719:121–140

    Article  CAS  PubMed  Google Scholar 

  118. Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  PubMed  Google Scholar 

  119. Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C, Mischak H, Metzger J (2009) Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 8:268–281

    Article  CAS  PubMed  Google Scholar 

  120. Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, Zurbig P, Mischak H, Ortiz A (2018) Novel urinary biomarkers for improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep 8:Article number 15940. https://doi.org/10.1038/s41598-018-34386-8

    Article  CAS  Google Scholar 

  121. Pejchinovski M, Siwy J, Metzger J, Dakna M, Mischak H, Klein J, Jankowski V, Bae KT, Chapman AB, Kistler AD (2017) Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant 32:487–497

    CAS  PubMed  Google Scholar 

  122. Simionato AVC, Carrilho E, Tavares MFM (2010) CE-MS and related techniques as a valuable tool in tumor biomarkers research. Electrophoresis 31:1214–1226

    Article  CAS  PubMed  Google Scholar 

  123. Latosinska A, Frantzi M, Vlahou A, Mischak H (2013) Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery: focus on bladder cancer. Proteomics Clin Appl 7:779–793

    Article  CAS  PubMed  Google Scholar 

  124. Frantzi M, van Kessel KE, Zwarthoff EC, Marquez M, Rava M, Malats N, Merseburger AS, Katafigiotis I, Stravodimos K, Mullen W, Zoidakis J, Makridakis M, Pejchinovski M, Critselis E, Lichtinghagen R, Brand K, Dakna M, Roubelakis MG, Theodorescu D, Vlahou A, Mischak H, Anagnou NP (2016) Development and validation of urine-based peptide biomarker panels for detecting bladder cancer in a multi-center study. Clin Cancer Res 22:4077–4086

    Article  CAS  PubMed  Google Scholar 

  125. Belczacka I, Latosinska A, Siwy J, Metzger J, Merseburger AS, Mischak H, Vlahou A, Frantzi M, Jankowski V (2018) Urinary CE-MS peptide marker pattern for detection of solid tumors. Sci Rep 8:Article Number: 5227. https://doi.org/10.1038/s41598-018-23585-y

    Article  CAS  Google Scholar 

  126. Gao Y, Lin L, Huang ZZ, Chen YJ, Hang W (2011) Peptidome workflow of serum and urine samples for biomarker discovery. Anal Methods 3:773–779

    Article  CAS  Google Scholar 

  127. Kolch W, Neusüss C, Pelzing M, Mischak H (2005) Capillary electrophoresis - mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 24:959–977

    Article  CAS  PubMed  Google Scholar 

  128. Albalat A, Mischak H, Mullen W (2011) Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 8:615–629

    Article  CAS  PubMed  Google Scholar 

  129. Mischak H, Julian BA, Novak J (2007) High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 1:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neuhoff NV, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, Mischak H (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18:149–156

    Article  CAS  PubMed  Google Scholar 

  131. Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann-Ivol CG, Sanchez JC, Binz PA, Hochstrasser DF, Appel RD (2005) MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics 5:2381–2384

    Article  CAS  PubMed  Google Scholar 

  132. Kaplan A, Soderstrom M, Fenyo D, Nilsson A, Falth M, Skold K, Svensson M, Pettersen H, Lindqvist S, Svenningsson P, Andren PE, Bjorkesten L (2007) An automated method for scanning LC-MS data sets for significant peptides and proteins, including quantitative profiling and interactive confirmation. J Proteome Res 6:2888–2895

    Article  CAS  PubMed  Google Scholar 

  133. Mischak H, Schanstra JP (2011) CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin Appl 5:9–23

    Article  CAS  PubMed  Google Scholar 

  134. Pontillo C, Filip S, Borras DM, Mullen W, Vlahou A, Mischak H (2015) CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 9:322–334

    Article  CAS  PubMed  Google Scholar 

  135. Pejchinovski M, Siwy J, Mullen W, Mischak H, Petri MA, Burkly LC, Wei R (2018) Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus. Lupus 27:6–16

    Article  CAS  PubMed  Google Scholar 

  136. Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S (2017) Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis 12:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schiffer E, Mischak H, Novak J (2006) High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 6:5615–5627

    Article  CAS  PubMed  Google Scholar 

  138. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JHH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neusüss C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt-Kopplin P (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9:2424–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rossing K, Mischak H, Dakna M, Zurbig P, Novak J, Julian BA, Good DM, Coon JJ, Tarnow L, Rossing P (2008) Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 19:1283–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF (2006) Discovery and validation of new protein biomarkers for 4 urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240

    Article  CAS  PubMed  Google Scholar 

  141. Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, Schmidt T, Schofer W, Zurbig P, Good DM, Coon JJ, Mischak H (2008) Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl 2:556–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF (2008) Urinary proteomic biomarkers on coronary artery disease. Mol Cell Proteomics 7:290–298

    Article  CAS  PubMed  Google Scholar 

  143. Torati LS, Migaud H, Doherty MK, Siwy J, Mullen W, Mesquita PEC, Albalat A (2017) Comparative proteome and peptidome analysis of the cephalic fluid secreted by Arapaima gigas (Teleostei: Osteoglossidae) during and outside parental care. PLoS One 12:art.no. e0186692

    Article  PubMed  CAS  Google Scholar 

  144. Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC, Biggs A, Eckersall PD (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteome 85:89–98

    Article  CAS  Google Scholar 

  145. Thomas FC, Mullen W, Tassi R, Ramirez-Torres A, Mudaliar M, McNeilly TN, Zadoks RN, Burchmore R, Eckersall PD (2016) Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol BioSyst 12:2735–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia-Canas V, Simo C, Herrero M, Ibanez E, Cifuentes A (2012) Present and future challenges in food analysis: foodomics. Anal Chem 84:10150–10159

    Article  CAS  PubMed  Google Scholar 

  147. Ibanez C, Simo C, Garcia-Canas V, Cifuentes A, Castro-Puyana M (2013) Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. Anal Chim Acta 802:1–13

    Article  CAS  PubMed  Google Scholar 

  148. Alvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A (2018) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 39:136–159

    Article  CAS  PubMed  Google Scholar 

  149. Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A (2016) Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem 408:2677–2685

    Article  CAS  PubMed  Google Scholar 

  150. Minkiewicz P, Dziuba J, Darewicz M, Iwaniak A, Dziuba M, Nalecz D (2008) Food peptidomics. Food Technol Biotechnol 46:1–10

    CAS  Google Scholar 

  151. Carrasco-Castilla J, Hernandez-Alvarez AJ, Jimenez-Martinez C, Gutierrez-Lopez GF, Vila-Ortiz G (2012) Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng Rev 4:224–243

    Article  CAS  Google Scholar 

  152. Saavedra L, Hebert EM, Minahk C, Ferranti P (2013) An overview of "omic" analytical methods applied in bioactive peptide studies. Food Res Int 54:925–934

    Article  CAS  Google Scholar 

  153. Sanchez-Rivera L, Martinez-Maqueda D, Cruz-Huerta E, Miralles B, Recio I (2014) Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 63:170–181

    Article  CAS  Google Scholar 

  154. Giacometti J, Buretic-Tomljanovic A (2017) Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 230:91–98

    Article  CAS  PubMed  Google Scholar 

  155. Gomez-Ruiz JA, Ramos M, Recio I (2007) Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis 28:4202–4211

    Article  CAS  PubMed  Google Scholar 

  156. Baptista DP, Araujo FDD, Eberlin MN, Gigante ML (2017) A survey of the peptide profile in prato cheese as measured by MALDI-MS and capillary electrophoresis. J Food Sci 82:386–393

    Article  CAS  PubMed  Google Scholar 

  157. Benavente F, Pero-Gascon R, Pont L, Jaumot J, Barbosa J, Sanz-Nebot V (2018) Identification of antihypertensive peptides in nutraceuticals by capillary electrophoresis-mass spectrometry. J Chromatogr A 1579:129–137

    Article  CAS  PubMed  Google Scholar 

  158. Catala-Clariana S, Benavente F, Gimenez E, Barbosa J, Sanz-Nebot V (2010) Identification of bioactive peptides in hypoallergenic infant milk formulas by capillary electrophoresis-mass spectrometry. Anal Chim Acta 683:119–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Czech Science Foundation, grant no. 20-03899S, and by the Czech Academy of Sciences, research project RVO 61388963. The authors thank Dr. Petra Sázelová for her help in preparation of this manuscript.

Conflict of Interest Statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kašička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Štěpánová, S., Kašička, V. (2021). Peptidomics and Capillary Electrophoresis. In: Colnaghi Simionato, A.V. (eds) Separation Techniques Applied to Omics Sciences. Advances in Experimental Medicine and Biology(), vol 1336. Springer, Cham. https://doi.org/10.1007/978-3-030-77252-9_5

Download citation

Publish with us

Policies and ethics