Skip to main content

Photoperiodic Modulation of Clock Gene Expression in the SCN

  • Chapter
  • First Online:
Neuroendocrine Clocks and Calendars

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 10))

  • 429 Accesses

Abstract

In temperate zones, photoperiod changes dramatically over the course of the year, so organisms have evolved mechanisms allowing anticipation of these environmental changes. The information about changes in duration of daylight is conveyed to the organism via neuroendocrine pathways. These pathways involve photoperiodic modulation of rhythmic production of the pineal hormone melatonin which is under control of the circadian system. This chapter will consider the role of the central circadian clock located in the suprachiasmatic nuclei in the adaptation to the photoperiodic changes, focusing on how photoperiod modulates circadian clock mechanisms at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albus H et al (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15(10):886–893

    Article  CAS  PubMed  Google Scholar 

  • Arendt J et al (1985) Some effects of melatonin and the control of its secretion in humans. Ciba Found Symp 117:266–283

    CAS  PubMed  Google Scholar 

  • Bittman EL, Karsch FJ, Hopkins JW (1983) Role of the pineal gland in ovine photoperiodism: regulation of seasonal breeding and negative feedback effects of estradiol upon luteinizing hormone secretion. Endocrinology 113(1):329–336

    Article  CAS  PubMed  Google Scholar 

  • Cagampang FR et al (1994) Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 24(1–4):179–184

    Article  CAS  PubMed  Google Scholar 

  • Carter DS, Goldman BD (1983) Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): mediation by melatonin. Endocrinology 113(4):1268–1273

    Article  CAS  PubMed  Google Scholar 

  • Carter SJ et al (2016) A matter of time: study of circadian clocks and their role in inflammation. J Leukoc Biol 99(4):549–560

    Article  CAS  PubMed  Google Scholar 

  • Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130(1):165–183

    Article  CAS  PubMed  Google Scholar 

  • Evans JA et al (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80(4):973–983

    Article  CAS  PubMed  Google Scholar 

  • Evans JA et al (2015) Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. BMC Biol 13:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farajnia S et al (2014) Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci U S A 111(26):9627–9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guido ME et al (1999) Daily rhythm of spontaneous immediate-early gene expression in the rat suprachiasmatic nucleus. J Biol Rhythm 14(4):275–280

    Article  CAS  Google Scholar 

  • Hastings MH (1991) Neuroendocrine rhythms. Pharmacol Ther 50(1):35–71

    Article  CAS  PubMed  Google Scholar 

  • Hazlerigg DG, Ebling FJ, Johnston JD (2005) Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr Biol 15(12):R449–R450

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann K, Illnerova H (1986) Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods. Neuroendocrinology 43(3):317–321

    Article  CAS  PubMed  Google Scholar 

  • Illnerová H (1988) Entrainment of mammalian circadian rhythms in melatonin production by light. Pineal Res Rev 6:173–217

    Google Scholar 

  • Illnerová H, Hoffman K, Vaněček J (1986) Adjustment of the rat pineal N-acetyltransferase rhythm to change from long to short photoperiod depends on the direction of the extension of the dark period. Brain Res 362(2):403–408

    Article  PubMed  Google Scholar 

  • Illnerová, H., 1991 The suprachiasmatic nucleus and rhythmic pineal melatonin production, In Suprachiasmatic nucleus: the Mind's clock, D.C. Klein, R.J. Moore, and S.M. Reppert, Editors, Oxford Univ. Press: New York. p. 197–216

    Google Scholar 

  • Illnerová H, Vaněček J (1980) Pineal rhythm in N-acetyltransferase activity in rats under different artificial photoperiods and in natural daylight in the course of a year. Neuroendocrinology 31(5):321–326

    Article  PubMed  Google Scholar 

  • Illnerová H, Vaněček J (1988) Entrainment of the rat pineal rhythm in melatonin production by light. Reprod Nutr Dev 28(2B):515–526

    Article  PubMed  Google Scholar 

  • Illnerová H, Vaněček J, Hoffmann K (1989) Different mechanisms of phase delays and phase advances of the circadian rhythm in rat pineal N-acetyltransferase activity. J Biol Rhythm 4(2):187–200

    Article  Google Scholar 

  • Illnerová H, Zvolský P, Vaněček J (1985) The circadian rhythm in plasma melatonin concentration of the urbanized man: the effect of summer and winter time. Brain Res 328(1):186–189

    Article  PubMed  Google Scholar 

  • Inagaki N et al (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104(18):7664–7669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jáč M et al (2000) Daily profiles of arginine vasopressin mRNA in the suprachiasmatic, supraoptic and paraventricular nuclei of the rat hypothalamus under various photoperiods. Brain Res 887(2):472–476

    Article  PubMed  Google Scholar 

  • Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-O- methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174(2):245–262

    Article  CAS  PubMed  Google Scholar 

  • Kornhauser JM, Mayo KM, Takahashi JS (1993) Immediate-early gene expression in a mammalian circadian pacemaker: the suprachiasmatic nucleus. In: Young MW (ed) Molecular genetics of biochemical rhythms. Dekker, New York, pp 271–307

    Google Scholar 

  • Lerner AB et al (1959) Melatonin in peripheral nerve. Nature 183:1821

    Article  CAS  PubMed  Google Scholar 

  • Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythm 18(3):235–249

    Article  Google Scholar 

  • Messager S et al (2000) Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci 12(8):2865–2870

    Article  CAS  PubMed  Google Scholar 

  • Nuesslein-Hildesheim B et al (2000) The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian hamster encodes both daily and seasonal time. Eur J Neurosci 12(8):2856–2864

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Yamazaki S, McMahon DG (2005) Constant light desynchronizes mammalian clock neurons. Nat Neurosci 8(3):267–269

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CL, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333–355

    Article  Google Scholar 

  • Reiter RJ (1974) Influence of pinealectomy on the breeding capability of hamsters maintained under natural photoperiodic and temperature conditions. Neuroendocrinology 13(6):366–370

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM (2000) Cellular and molecular basis of circadian timing in mammals. Semin Perinatol 24(4):243–246

    Article  CAS  PubMed  Google Scholar 

  • Schwartz WJ et al (2000) Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience 98(3):535–547

    Article  CAS  PubMed  Google Scholar 

  • Sosniyenko S et al (2009) Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus. Eur J Neurosci 30(9):1802–1814

    Article  PubMed  Google Scholar 

  • Steinlechner S et al (2002) Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J Biol Rhythm 17(3):202–209

    Article  CAS  Google Scholar 

  • Sumová A, Illnerová H (1996) Endogenous melatonin signal does not mediate the effect of photoperiod on the rat suprachiasmatic nucleus. Brain Res 725(2):281–283

    Article  PubMed  Google Scholar 

  • Sumová A, Illnerová H (1998) Photic resetting of intrinsic rhythmicity of the rat suprachiasmatic nucleus under various photoperiods. Am J Phys 274(3 Pt 2):R857–R863

    Google Scholar 

  • Sumová A, Kováčiková Z, Illnerová H (2007) Dynamics of the adjustment of clock gene expression in the rat suprachiasmatic nucleus to an asymmetrical change from a long to a short photoperiod. J Biol Rhythm 22(3):259–267

    Article  Google Scholar 

  • Sumová A, Trávníčková Z, Illnerová H (1995a) Memory on long but not on short days is stored in the rat suprachiasmatic nucleus. Neurosci Lett 200(3):191–194

    Article  PubMed  Google Scholar 

  • Sumová A, Trávníčková Z, Illnerová H (2000) Spontaneous c-Fos rhythm in the rat suprachiasmatic nucleus: location and effect of photoperiod. Am J Physiol Regul Integr Comp Physiol 279(6):R2262–R2269

    Article  PubMed  Google Scholar 

  • Sumová A et al (1995b) The rat suprachiasmatic nucleus is a clock for all seasons. Proc Natl Acad Sci U S A 92(17):7754–7758

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumová A et al (1998) Spontaneous rhythm in c-Fos immunoreactivity in the dorsomedial part of the rat suprachiasmatic nucleus. Brain Res 801(1–2):254–258

    Article  PubMed  Google Scholar 

  • Sumová A et al (2002) The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res 947(2):260–270

    Article  PubMed  Google Scholar 

  • Sumová A et al (2003) Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. J Biol Rhythm 18(2):134–144

    Article  CAS  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JS et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier BB et al (2003) Photoperiod differentially regulates clock genes' expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience 118(2):317–322

    Article  CAS  PubMed  Google Scholar 

  • van den Pol AN (1991) The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Klein DC, Moore RJ, Reppert SM (eds) Suprachiasmatic nucleus: the Mind's clock. Oxford Univ. Press, New York, pp 17–50

    Google Scholar 

  • VanderLeest HT et al (2007) Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17(5):468–473

    Article  CAS  PubMed  Google Scholar 

  • Vondrašová D, Hájek I, Illnerová H (1997) Exposure to long summer days affects the human melatonin and cortisol rhythms. Brain Res 759(1):166–170

    Article  PubMed  Google Scholar 

  • Vuillez P et al (1996) In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neurosci Lett 208(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh DK et al (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T et al (2017) Localization of photoperiod responsive circadian oscillators in the mouse suprachiasmatic nucleus. Sci Rep 7(1):8210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zelinski EL et al (2013) Persistent impairments in hippocampal, dorsal striatal, and prefrontal cortical function following repeated photoperiod shifts in rats. Exp Brain Res 224(1):125–139

    Article  CAS  PubMed  Google Scholar 

Further Recommended Reading

  • Tackenberg MC, McMahon DG (2018 Jan 9) Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast. 2018:8217345. https://doi.org/10.1155/2018/8217345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • This review represents a comprehensive overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN’s role in a putative brain network controlling photoperiodic input and output.

    Google Scholar 

  • Porcu A, Riddle M, Dulcis D, Welsh DK Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plasticity 2018:5147585. https://doi.org/10.1155/2018/5147585

  • The review summarizes data proposing that the SCN may be an essential mediator of the effects of seasonal changes of day length on mental health. The authors explore various forms of neuroplasticity that occur in the SCN and other brain regions to facilitate seasonal adaptation, particularly altered phase distribution of cellular circadian oscillators in the SCN and changes in hypothalamic neurotransmitter expression.

    Google Scholar 

  • Coomans CP, Ramkisoensing A, Meijer JH (2015) The suprachiasmatic nuclei as a seasonal clock. Frontiers in Neuroendocrinology 37:29–42 https://doi.org/10.1016/j.yfrne.2014.11.002

    Article  PubMed  Google Scholar 

  • The review provides an overview on seasonal SCN modulation, including relevance to human physiology.

    Google Scholar 

  • Dardente H, Wyse CA, Lincoln GA, Wagner GC, Hazlerigg DG, Dardente H et al (2016 Jul 26) Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep. PLoS One. 11(7):e0159201. https://doi.org/10.1371/journal.pone.0159201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overall, these data demonstrate that synchronizing effects of light on SCN circadian organization proceed similarly in diurnal ungulates and in nocturnal rodents, despite differences in neuropeptide gene expression.

    Google Scholar 

Download references

Acknowledgements

The preparation of this chapter was supported by the Research Project RV0: 67985823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Sumova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumova, A., Illnerova, H. (2020). Photoperiodic Modulation of Clock Gene Expression in the SCN. In: Ebling, F.J.P., Piggins, H.D. (eds) Neuroendocrine Clocks and Calendars. Masterclass in Neuroendocrinology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-55643-3_10

Download citation

Publish with us

Policies and ethics